动态规划求解最长公共子序列的C++算法实现

#include<iostream>
using namespace std;
int CommonOrder(char x[] ,int m ,char y[], int n, char z[])
{
    int i,j,k;
    int L[10][10],S[10][10]; 
    for(j=0;j<=n;j++)
        L[0][j] = 0;
    for(i=0;i<=m;i++)
        L[i][0] = 0;
    for(i=1;i<=m;i++)
        for(j=1;j<=n;j++)
        {
            if(x[i-1]==y[j-1])
            {
                L[i][j] = L[i-1][j-1]+1;    //如果x[i-1]==y[j-1],那么L[i][j]的值为其最近的左对角线元素的值加一 
                S[i][j] = 1;
            }
            else if(L[i][j-1]>=L[i-1][j])   //如果 L[i][j-1]>=L[i-1][j]即 L[i][j]左边相邻的元素大于等于上方相邻的                                            
            {                                //元素,则该元素的值取左方相邻元素的值
                L[i][j] = L[i][j-1];
                S[i][j] = 2;
            }    
            else                            //如果x[i-1]==y[j-1]且L[i][j-1]<L[i-1][j],则 L[i][j]的值为其上方的值 
            {
                L[i][j] = L[i-1][j];
                S[i][j] =3;
            }
        }
    for(j=0;j<=m;j++)
        {
        for(i=0;i<=n;i++)
            cout<<L[j][i];
        cout<<endl;
    }
    i=m;j=n;k=L[m][n];
    while(i>0 && j>0)
    {
        if(S[i][j] == 1)
        {
            z[k] = x[i];
            k--;
            i--;
            j--;
        }
        else if(S[i][j] == 2)
            j--;
        else 
            i--;
    }
    for(k=0;k<L[m][n];k++)
        cout<<z[k];
    cout<<endl;
    return L[m][n];    
}


int main()
{
    char x[]={'a','b','c','b','d','b'};
    char y[]={'a','c','b','b','a','b','d','b','b'};
    char b[50];
    cout<<"最长子序列的长度为:"<<CommonOrder(x,6,y,9,b);
}

 

下面是使用动态规划求解最长公共子序列问题c++算法实现: ```c++ #include<iostream> #include<string> #include<algorithm> using namespace std; int main() { string str1, str2; cin >> str1 >> str2; int len1 = str1.length(), len2 = str2.length(); int dp[len1 + 1][len2 + 1]; // 定义dp数组 for (int i = 0; i <= len1; i++) { dp[i][0] = 0; } for (int j = 0; j <= len2; j++) { dp[0][j] = 0; } for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (str1[i - 1] == str2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; // 相同则加1 } else { dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // 不同则取左、上两个状态的较大值 } } } cout << dp[len1][len2] << endl; // 输出最长公共子序列长度 return 0; } ``` 算法思路: 我们定义 $dp[i][j]$ 表示字符串 $str1$ 的前 $i$ 个字符和字符串 $str2$ 的前 $j$ 个字符的最长公共子序列长度。初始化时,$dp$ 数组的第一行和第一列都为 $0$,因为其中一个字符串为空字符串时,它的最长公共子序列长度一定为 $0$。接着,我们从字符串 $str1$ 的第 $1$ 个字符和字符串 $str2$ 的第 $1$ 个字符开始遍历,如果这两个字符相等,那么此时的最长公共子序列长度就应该是 $dp[i-1][j-1]+1$;如果这两个字符不相等,那么此时的最长公共子序列长度就应该是 $dp[i-1][j]$ 和 $dp[i][j-1]$ 中较大的那一个。最后,$dp[len1][len2]$ 即为所求的最长公共子序列长度算法复杂度: 该算法的时间复杂度为 $O(mn)$,其中 $m$ 为字符串 $str1$ 的长度,$n$ 为字符串 $str2$ 的长度。空间复杂度为 $O(mn)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值