Mysql学习总结四:聚合函数、SELECT查询基本结构、select查询执行顺序
1、聚合函数
聚合函数的类型如下:
- AVG()
- SUM()
- MAX()
- MIN()
- COUNT()
聚合函数的语法如下:
SELECT column, group_function(column)
FROM table
[WHERE
condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];
1)WHERE一定放在FROM后面;
2)在SELECT列表中所有未包含在组函数中的列都应该包含在 GROUP BY子句中;
3)HAVING 不能单独使用,必须要跟 GROUP BY 一起使用;
问题1:能不能使用count(列名)替换count()?
不要使用 count(列名)来替代 count(*) , count(*) 是 SQL92 定义的标准统计行数的语法,跟数
据库无关,跟 NULL 和非 NULL 无关。count()会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
COUNT(*)返回表中记录总数,适用于任意数据类型。
SELECT COUNT(*)
FROM
WHERE
employees
department_id = 50;
COUNT(expr) 返回expr不为空的记录总数。
SELECT COUNT(commission_pct)
FROM employees
WHERE
department_id = 50;
问题2:WHERE和HAVING的对比?
区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;
HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。
这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。
另外,WHERE排除的记录不再包括在分组中。
区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。
这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一
个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。
HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。
小结如下:
开发中的选择:
WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。
2、SELECT查询结构和执行顺序
2.1 SELECT查询结构
SELECT查询的基本结构如下:
#方式1:
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式2:
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页
2.2 SELECT执行顺序
1)关键词的查询顺序如下:
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
2)SQL的执行顺序如下:
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT
比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7
在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个 虚拟表 ,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。