二叉搜索树节点最小距离

本文介绍了如何在二叉搜索树中找到任意两个不同节点值之间的最小差值,主要讨论了三种遍历方法:递归、迭代和Morris中序遍历,并详细分析了每种方法的时间和空间复杂度。代码实现中,使用了Morris中序遍历以降低空间复杂度,最后给出了排序和找到最小差值的解决方案。
摘要由CSDN通过智能技术生成

题目:

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

示例 1:

在这里插入图片描述

输入:root = [4,2,6,1,3]
输出:1

示例 2:

在这里插入图片描述

输入:root = [1,0,48,null,null,12,49]
输出:1

需要考虑到的测试用例:

  • 功能测试:如 [4, 2, 6, 1, 3]
  • 特殊输入测试:如树中只有单个节点、两个节点
  • 性能测试:如树的节点个数较大

分析:

需要搜索到二叉树中所有节点元素,最小差值一定出现在数值差距最小的两个元素之间,因此可以把所有元素进行排序,再遍历及相邻元素差值,寻找最小值。所以问题的本质是二叉树中值遍历算法与排序算法的组合。
二叉树中值遍历算法有三种:递归、迭代、Morris中序遍历,前二者算法时间复杂度与空间复杂度均为O(n),Morris中序遍历时间复杂度为O(n),空间复杂度为O(1),当然选用Morris中序遍历。
基于以上分析,编写如下解法代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
#include <vector>
#include <algorithm>
using namespace std;
class Solution {
   
public:
   int minDiffInBST(TreeNode* root) {
   
      if (root == NULL) {
   
         return -1;
      }
      vector<int> members = inOrderTracersal(root);
      if (members.size() == 1) {
   
         return 0;
      }
      sort(members.begin(), members.end());
      int ret = members[1] - members[0];
      for (unsigned int i = 1; i < members.size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>