MFCC

本总结是是个人为防止遗忘而作,不得转载和商用。          MFCC的分析着眼于人儿的听觉特征,因为人耳所听到的声音的高低与声音的频率不成线性正比关系,而用Mel频率尺度则更符合人耳的听觉特征。          Mel频率尺度:它的值大体上对应于实际频率的对数分布关系,Mel频率与实际...

2016-11-16 10:15:07

阅读数:4071

评论数:0

隐马尔可夫(HMM)、前/后向算法、Viterbi算法 再次总结

本总结是是个人为防止遗忘而作,不得转载和商用。         说明:此篇是作者对“隐马尔可夫模型”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http:/...

2016-09-01 10:00:13

阅读数:20224

评论数:3

采样

本总结是是个人为防止遗忘而作,不得转载和商用。   带拒绝的采样 有时候我们会遇到这样的情况:目标函数的样本不好采样,比如:             假设我们的目标函数的概率密度函数是上图中圆,“在圆内均匀采样”这个要求稍微有点麻烦(这个还简单,如果更复杂的图形那就“给出一个点是落在目...

2016-09-01 09:44:19

阅读数:500

评论数:0

LDA主题模型

本总结是是个人为防止遗忘而作,不得转载和商用。         在解释LDA之前需要先介绍些前置知识,然后一点点说明LDA,所以,如果某个前置知识你不明白,那个人建议你不要跳过,否则....否则随你喽~       PS:下面章节的关系是:            LDA的DA是“Dirichlee...

2016-09-01 09:37:30

阅读数:1707

评论数:0

贝叶斯网络、拉普拉斯平滑

本总结是是个人为防止遗忘而作,不得转载和商用。         说明:前置知识是朴素贝叶斯,这个我以总结,地址是:       http://blog.csdn.net/xueyingxue001/article/details/50680908   复习:一个贝叶斯的例子      ...

2016-09-01 09:19:51

阅读数:6478

评论数:3

EM算法再次总结

说明:此篇是作者对“EM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http://blog.csdn.net/xueyingxue001/article/...

2016-07-25 09:41:28

阅读数:8172

评论数:6

推荐系统 - 4 - LMF基于隐变量的推荐、PCA(主成分分析)

本总结是是个人为防止遗忘而作,不得转载和商用。            本节的前置知识是我总结的“推荐系统 - 1、2”。 LMF          假设一个场景:假定Ben、Tom、John、Fred对6种商品进行了评价,评分越高代表对该商品越喜欢。0表示未评价,如下图:        ...

2016-07-21 17:33:03

阅读数:2324

评论数:0

推荐系统 - 3 - 协同过滤算法、随机游走算法

本总结是是个人为防止遗忘而作,不得转载和商用。            本节的前置知识是我总结的“推荐系统 - 1、2”。 协同过滤算法          基于用户行为的数据而设计的推荐算法被称为协同过滤算法(Collaborative Filtering, CF)。          什...

2016-07-21 17:27:15

阅读数:5571

评论数:0

推荐系统 - 2 - 离线指标和其他指标

本总结是是个人为防止遗忘而作,不得转载和商用。            推荐系统的前置知识之一“相似度的判断”见总结“推荐系统 - 1 - 相似度”。 评价推荐系统的首要离线指标          通过将单个用户的准确率(或召回率)做累加,即得到整个推荐系统的准确率(或召回率),该离线指标常...

2016-07-21 17:26:01

阅读数:1203

评论数:0

推荐系统 - 1 - 相似度

本总结是是个人为防止遗忘而作,不得转载和商用。   相似度/距离计算方法总结          既然聚类思路的核心是度量样本间的内在相似性,那相似度/距离的计算方法是什么呢?          首先先给出个汇总图,然后在解释,汇总图如下:          解释:         ...

2016-07-21 17:23:33

阅读数:1827

评论数:0

聚类 - 6 - Canopy聚类

本总结是是个人为防止遗忘而作,不得转载和商用。   Canopy算法          虽然Canopy算法可以划归为聚类算法,但更多的可以使用Canopy算法做空间索引,其时空复杂度都很出色。 算法描述          1,对于给定样本x1,x2, ..., xm,给定先验值 r1,...

2016-07-20 14:42:33

阅读数:589

评论数:2

聚类 - 5 - 谱和谱聚类

本总结是是个人为防止遗忘而作,不得转载和商用。   谱          什么是谱?          先说说咱们口头上经常说的“某个人靠不靠谱”,一般,如果一个人遵守行为准则(即:此人言而有信、说到做到),那这个人就靠谱,反正这个人就不靠谱。          反映到坐标轴上的话,如果...

2016-07-20 11:51:28

阅读数:2124

评论数:10

聚类 - 4 - 层次聚类、密度聚类(DBSCAN算法、密度最大值聚类)

本总结是是个人为防止遗忘而作,不得转载和商用。   层次聚类:          层次聚类的思想有两种:凝聚的层次聚类、分裂的层次聚类。          以有A, B, C, D,E, F, G这7个样本为例。 凝聚的层次聚类 1,  将每个对象作为一个簇,这时就有7个簇。 2, ...

2016-07-20 11:49:47

阅读数:8484

评论数:5

聚类 - 3 - 轮廓系数

本总结是是个人为防止遗忘而作,不得转载和商用。            用聚类算法分好类后如何判断分的效果呢?方法就是轮廓系数(Silhouette)。          Silhouette系数是对聚类结果有效性的解释和验证,由Peter J. Rousseeuw于1986提出。     ...

2016-07-20 11:45:46

阅读数:9489

评论数:0

聚类 - 2 - K-means算法,K中值聚类

本总结是是个人为防止遗忘而作,不得转载和商用。            K-means算法,也被称为k-平均或k-均值,是一种广泛使用的聚类算法,或者成为其他聚类算法的基础。 算法步骤          输入:样本S = X1, X2,..., Xm。          步骤:     ...

2016-07-20 11:43:33

阅读数:6145

评论数:1

聚类 - 1 - 聚类介绍

本总结是是个人为防止遗忘而作,不得转载和商用。            很多算法,比如“线性回归、Logistics/softmax回归、SVM”等都是给出了样本xi和样本的类别yi,但是如果只给出样本xi,但是没有给出该样本的类别呢?聚类就是处理这类问题的,它的原理就是根据某种方式的相似性,把...

2016-07-20 11:41:07

阅读数:1073

评论数:0

SVM再次总结 - 5 - SMO

说明:此篇是作者对“SVM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http://blog.csdn.net/xueyingxue001/article...

2016-07-19 14:37:51

阅读数:430

评论数:0

SVM再次总结 - 4 - 非线性支持向量机

说明:此篇是作者对“SVM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http://blog.csdn.net/xueyingxue001/article...

2016-07-19 14:36:22

阅读数:502

评论数:0

SVM再次总结 - 3 - 线性支持向量机

说明:此篇是作者对“SVM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http://blog.csdn.net/xueyingxue001/article...

2016-07-19 14:33:49

阅读数:414

评论数:0

SVM再次总结 - 2 - 线性可分支持向量机

说明:此篇是作者对“SVM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:       http://blog.csdn.net/xueyingxue001/article...

2016-07-19 12:01:56

阅读数:1271

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭