caffe安装系列——安装python依赖包

版权声明:本文为博主原创文章,引用时请附上链接。 https://blog.csdn.net/xuezhisdc/article/details/48706843

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


地平线机器人——嵌入式人工智能领导者 长期招聘计算机视觉/深度学习等方向的工程师或实习生。感兴趣的话,请发送邮件,可以内推


说明

  • 网上关于caffe的安装教程非常多,但是关于每一步是否操作成功,出现了什么样的错误又该如何处理没有给出说明。因为大家的操作系统的环境千差万别,按照博客中的教程一步步的安装,最后可能失败——这是很常见的哦。有的教程甚至省略了一些细节部分,让小白更不知道如何判断每一步是否操作成功,如何处理出现的错误。
  • 作者花费了很长时间才成功地将caffe装完,期间遇到好多错误,多次重装操作系统。现在将经验写下来,一方面为了和大家分享,讨论;另一方面是为了记录一下下~~~

环境

操作系统: Ubuntu 14.04
GCC/G++:4.7.x
OpenCV: 2.4.11和3.0.0
Matlab :R2014b(a)
Python: 2.7

安装步骤

安装theano依赖包

  • 安装基本的依赖包
# 安装ipython
# 安装gfortran,后面编译过程中会用到
# 安装blas,Ubuntu下对应的是libopenblas,其它操作系统可能需要安装其它版本的blas——这是个OS相关的。
# 安装lapack,Ubuntu下对应的是liblapack-dev,和OS相关。
# 安装atlas,Ubuntu下对应的是libatlas-base-dev,和OS相关。
# -y,遇到需要用户选择的项,都选y
sudo apt-get install -y ipython ipython-notebook pandoc 
sudo apt-get install -y gfortran libopenblas-dev liblapack-dev libatlas-base-dev 
# 安装pip
sudo apt-get install -y python-pip python-dev python-nose g++ git 
sudo apt-get install -y python-numpy python-scipy  
# 自己编译的原因是,防止theano出错
# 使用豆瓣的python源,下载速度快
sudo pip install numpy -i http://pypi.douban.com/simple 
sudo pip install scipy -i http://pypi.douban.com/simple 
# 查看目录/tmp/pip_build_root
sudo apt-get install -y python-matplotlib python-sklearn python-sklearn-lib 
  • 安装boost和pyCUDA
# 安装boost和和pyCUDA。pyCUDA需要boost。
sudo apt-get install -y libboost-all-dev 
# 下载pycuda源代码
git clone --recursive http://git.tiker.net/trees/pycuda.git
cd pycuda
sudo ./configure.py --cuda-root=/usr/local/cuda --cudadrv-lib-dir=/usr/lib/x86_64-linux-gnu --boost-inc-dir=/usr/include --boost-lib-dir=/usr/lib --boost-python-libname=boost_python --boost-thread-libname=boost_thread --no-use-shipped-boost 
#多核编译
make -j 
#安装
sudo python setup.py install
  • # 安装Theano
sudo pip install theano -i http://pypi.douban.com/simple
  • 安装pyCaffe需要的依赖
# 使用apt-get安装大多数包
sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython python-yaml 
sudo apt-get install -y protobuf-c-compiler protobuf-compile
# 因为有些包使用apt-get安装失败,所以使用pip重新安装它们,防止后面编译caffe过程中报错。
sudo pip install protobuf --upgrade -i http://pypi.douban.com/simple
sudo pip install pillow --upgrade -i http://pypi.douban.com/simple
sudo pip install six --upgrade -i http://pypi.douban.com/simple

至此,安装python依赖包的工作已经完成。也没有什么检查安装成功的评价标准。

展开阅读全文

没有更多推荐了,返回首页