谁说Python慢来着?不用Python,这个问题难倒了无数的程序员

       围棋是全世界最古老的棋种(没有之一),也是古代哲学思想和中国传统文化的物质载体。小小纹枰,不过一尺见方,竟蕴藏着万千气象,着实令人为之着迷。少年时代的我,曾经有一段时间醉心于围棋。

       标准的围棋盘由横竖各19道线组成网格,共有361个交叉点,每个交叉点上有白子、黑子和无子等三种可能的状态。那么问题来了:围棋总共有多少种不同的局面呢?

       稍微思考一下,所有的程序员都会给出正确的答案: 3 361 3^{361} 3361(3的361次方)。可是,这究竟是一个多大的数字呢?算一下就知道了。

       Python程序员随手写了一行代码,敲个回车,计算就结束了。

>>> pow(3,361)
174089650659031927907188238070
564367946602724950263541194828
118706801051676184649841162792
889887149386120969888163207806
137549871813550931295148033696
60572893075468180597603

       C/C++程序员看完Python程序员的操作,不以为然,心里想,别看你写起来简单,速度肯定没我快。讲效率,还得看我C/C++的。

long result = 1
int i
for(i=0; i<361; i++) {
	result *= 3;
}

       写到这里,C/C++程序员忽然意识到,long int恐怕不够用,即使long long int也只有8个字节,最大只能到 2 64 − 1 2^{64}-1 2641,计算 3 361 3^{361} 3361肯定会溢出的。比long long更大的整型没有了,要是临时定义一个结构保存超大整数,再为超大整数的计算写一堆函数,恐怕一时半会儿搞不定。这可如何是好?要不用改用double float试试?赶紧上网查了一下,double可以表示-1.79E+308 ~ +1.79E+308之间的任意数,可是 3 361 3^{361} 3361在这个范围内吗?

       这时,C/C++程序员心里有点慌了。幸好有点数学功底,简单计算一下:

l o g 10 3 361 = 361 × l o g 10 3 ≈ 172.24077295379814 log_{10}{3^{361}}=361\times log_{10}3\approx172.24077295379814 log103361=361×log103172.24077295379814

        3 361 3^{361} 3361大约有173位长,总算还在double覆盖的范围之内。也不用循环了,直接使用数学库中的pow函数吧。

#include <stdio.h>
#include <math.h>

int main(void) {
    double result = pow(3,361);
    printf("%Lf\n", result);

    return 0;
}

       最后,C/C++程序员给出了一个浮点类型的答案。虽然精度略有损失,但也不算离谱。我用的是CodeBlocks,显示耗时28毫秒,这里面应当包括了编译连接的时间,否则C不至于慢到这个程度。

174089650659031910000000000000
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
00000000000000000000000.000000

Process returned 0 (0x0)
Execution time : 0.028 s

       看完C/C++程序员的这番折腾,Java程序员擦擦额头的冷汗,心中暗自庆幸:多亏我大Java有BigInteger这样的神器,不然真要出丑了。

import java.math.BigInteger;

BigInteger result = new BigInteger("1");
for(int i=1; i<=361; i++) {  
	result.multiply(new BigInteger("3")));
}

       BigInteger用起来很方便,计算 3 361 3^{361} 3361毫无压力,只是不能兼容普通整型的那些运算符号,所有的运算都需要显式地调用函数,比如,这里的乘法就得调用multiply函数。

       以上场景,纯属臆测,绝无褒贬任何编程语言之意,请各位明察。实际上,Python的超大整数计算也是C语言实现的,只不过采用了非常精妙的方案,最终经过各种优化,性能远超我们自己写出来的C代码。

       Python的超大整数计算方案,精妙在哪儿呢?仅举存储一例:普通的Python整型采用4个字节存储,当处理超大整数时,每4个字节一个存储单元,单元之间采用 2 30 2^{30} 230即1073741824进制,一个单元满1073741824即向上一单元进位。


在这里插入图片描述

Python超大整数的存储实现


       上图是超大整数1152921506754330627采用1073741824进制的存储示意图,占用了三个存储单元共计12个字节,每个单元仍然是普通的整型——这就是Python的超大整型和普通整型完全兼容的秘密。在这一点上,Python可以说完胜Java的BigInteger。不过Java还有个BigDecimal,可以无损地处理任意精度的浮点数,为Java扳回一局。

       采用1073741824进制的Python的超大整数计算方案的效率如何呢?还是以计算 3 361 3^{361} 3361为例,看Python代码需要多长时间。

>>> import time
>>> def power(x, base=2):
	t0 = time.time()
	result = pow(base, x)
	print('耗时%.06f秒'%(time.time()-t0))
	return result

>>> power(361, base=3)
耗时0.000000174089650659031927907188238070
564367946602724950263541194828
118706801051676184649841162792
889887149386120969888163207806
137549871813550931295148033696
60572893075468180597603

       太神奇了!居然连1微秒都不到?我有点怀疑这个结论,继续测试更大的数字,2的1000次方。

>>> power(1000)
耗时0.000000107150860718626732094842504906
000181056140481170553360744375
038837035105112493612249319837
881569585812759467291755314682
518714528569231404359845775746
985748039345677748242309854210
746050623711418779541821530464
749835819412673987675591655439
460770629145711964776865421676
604298316526243868372056680693
76

       计算 2 1000 2^{1000} 21000所花时间同样少于1微秒,但是显示计算结果花费了较长时间。我把代码修改了一下,不再显示计算结果,只考察计算时间。

>>> def power(x, base=2):
	t0 = time.time()
	result = pow(base, x)
	print('耗时%.06f秒'%(time.time()-t0))
	#return result

	
>>> power(10000) # 2的1万次方
耗时0.000000>>> power(100000) # 2的10万次方
耗时0.000000>>> power(1000000) # 2的100万次方
耗时0.005016>>> power(10000000) # 2的1千万次方
耗时0.048000>>> power(100000000) # 2的1亿次方
耗时0.620648>>> power(1000000000) # 2的10亿次方
耗时7.448035>>> power(10000000000) # 2的100亿次方
耗时77.881435

       计算2的1万次方和2的10万次,所花时间仍然不足1微秒。直到计算2的100万次方时,方才显示耗时5毫秒。当算完2的100亿次方之后,我没有继续下去——2的100亿次方,这个数字实在是太过恐怖,我已经无法想象它的大小了。要知道,地球上全部物质的原子数量,也不过是1.28E47这个量级,大约是2的157次方。

       那么,Python能够计算的最大整数到底有多大呢?我没有明确的概念,不过我在验证费马小定理的逆命题时,出现过一次超大整数计算错误。

a = 2
t = 2305843009213693951
s = 1152921504606846975
Traceback (most recent call last):
  File "huge.py", line 56, in <module>
    miller_rabin(x) # M61
  File "huge.py", line 42, in miller_rabin
    print((pow(a, t*pow(2,s)) - 1)%huge_num)
MemoryError

当我试图计算pow(a, t*pow(2,s)时,发生了内存错误。这里a等于2,s大于115亿亿,t大于230亿亿。显然,这个结果远远大于2的100亿次方。

已标记关键词 清除标记
DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复。程序主要针对0xc000007b问题设计,可以完美修复该问题。本程序中包含了最新版的DirectX redist(Jun2010),并且全部DX文件都有Microsoft的数字签名,安全放心。 本程序为了应对一般电脑用户的使用,采用了易用的一键式设计,只要点击主界面上的“检测并修复”按钮,程序就会自动完成校验、检测、下载、修复以及注册的全部功能,无需用户的介入,大大降低了使用难度。在常规修复过程中,程序还会自动检测DirectX加速状态,在异常时给予用户相应提示。 本程序适用于多个操作系统,如Windows XP(需先安装.NET 2.0,详情请参阅“致Windows XP用户.txt”文件)、Windows Vista、Windows 7、Windows 8、Windows 8.1、Windows 8.1 Update、Windows 10,同时兼容32位操作系统和64位操作系统。本程序会根据系统的不同,自动调整任务模式,无需用户进行设置。 本程序的V4.0版分为标准版、增强版以及在线修复版。所有版本都支持修复DirectX的功能,而增强版则额外支持修复c++的功能。在线修复版功能与标准版相同,但其所需的数据包需要在修复时自动下载。各个版本之间,主程序完全相同,只是其配套使用的数据包不同。因此,标准版和在线修复版可以通过补全扩展包的形式成为增强版。本程序自V3.5版起,自带扩展功能。只要在主界面的“工具”菜单下打开“选项”对话框,找到“扩展”标签,点击其中的“开始扩展”按钮即可。扩展过程需要Internet连接,扩展成功后新的数据包可自动生效。扩展用时根据网络速度不同而不同,最快仅需数秒,最需要数分钟,烦请耐心等待。如扩展失败,可点击“扩展”界面左上角小锁图标切换为加密连接,即可很大程度上避免因防火墙或其他原因导致的连接失败。 本程序自V2.0版起采用全新的底层程序架构,使用了异步多线程编程技术,使得检测、下载、修复单独进行,互不干扰,快速如飞。新程序更改了自我校验方式,因此使用新版本的程序时不会再出现自我校验失败的错误;但并非取消自我校验,因此程序安全性与之前版本相同,并未降低。 程序有更新系统c++功能。由于绝大多数软件运行时需要c++的支持,并且c++的异常也会导致0xc000007b错误,因此程序在检测修复的同时,也会根据需要更新系统中的c++组件。自V3.2版本开始使用了全新的c++扩展包,可以大幅提高工业软件修复成功的概率。修复c++的功能仅限于增强版,标准版及在线修复版在系统c++异常时(非丢失时)会提示用户使用增强版进行修复。除常规修复外,新版程序还支持C++强力修复功能。当常规修复无效时,可以到本程序的选项界面内开启强力修复功能,可大幅提高修复成功率。请注意,请仅在常规修复无效时再使用此功能。 程序有两种窗口样式。正常模式即默认样式,适合绝大多数用户使用。另有一种简约模式,此时窗口将只显示最基本的内容,修复会自动进行,修复完成10秒钟后会自动退出。该窗口样式可以使修复工作变得更加简单快速,同时方便其他软件、游戏将本程序内嵌,即可进行无需人工参与的快速修复。开启简约模式的方法是:打开程序所在目录下的“Settings.ini”文件(如果没有可以自己创建),将其中的“FormStyle”一项的值改为“Simple”并保存即可。 新版程序支持命令行运行模式。在命令行中调用本程序,可以在路径后直接添加命令进行相应的设置。常见的命令有7类,分别是设置语言的命令、设置窗口模式的命令,设置安全级别的命令、开启强力修复的命令、设置c++修复模式的命令、控制Direct加速的命令、显示版权信息的命令。具体命令名称可以通过“/help”或“/?”进行查询。 程序有高级筛选功能,开启该功能后用户可以自主选择要修复的文件,避免了其他不必要的修复工作。同时,也支持通过文件进行辅助筛选,只要在程序目录下建立“Filter.dat”文件,其中的每一行写一个需要修复文件的序号即可。该功能仅针对高级用户使用,并且必须在正常窗口模式下才有效(简约模式时无效)。 本程序有自动记录日志功能,可以记录每一次检测修复结果,方便在出现问题时,及时分析和查找原因,以便找到解决办法。 程序的“选项”对话框中包含了7项高级功能。点击"常规”选项卡可以调整程序的基本运行情况,包括日志记录、安全级别控制、调试模式开启等。只有开启调试模式后才能在C
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 15.20元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值