cuda代码范例(循环)详细讲解

原文网址:http://datamining.xmu.edu.cn/bbs/forum.php?mod=viewthread&tid=475


有三个向量 int a[10], b[10], c[10];
我们要计算a和b的向量之和存放到c中。
一般C语言:

  1. for(int i=0; i<10; i++)
  2.   c[i] = a[i] + b[i];
复制代码
CUDA编程做法:
GPU中的每个线程(核)有一个 独立序号叫 index,那么只要序号从0到9的线程执行c[ index] = a[ index] + b[ index];就可以实现以上的for循环。
GPU的可贵之处就是,可以并发运行多个线程,相当于一个时间内赋值10次。


 #include <stdio.h>
#include <cuda_runtime.h>

/* 运行在GPU端的程序 */
__global__ void vectorADD(int* a, int* b, int* c)
{
     int index = threadIdx.x;//获得当前线程的序号
     if(index < blockDim.x)
         c[index] = a[index] + b[index];
}

int main ()
{
        /* 定义10个GPU运算线程 */
        int N = 10;
        
        /* 本地开辟三个数组存放我们要计算的内容 */
        int* h_a = (int*) malloc (N * sizeof(int));
        int* h_b = (int*) malloc (N * sizeof(int));
        int* h_c = (int*) malloc (N * sizeof(int));
        /* 初始化数组A, B和C */
        for(int i=0; i<N; i++)
        {
                h_a[i] = i;
                h_b[i] = i;
        }

        /* 计算10个int型需要的空间 */
        int size = N * sizeof(int);
        
        /* 在GPU上分配同样大小的三个数组 */
        int* d_a;
        int* d_b;
        int* d_c;
        cudaMalloc((void**)&d_a, size);
        cudaMalloc((void**)&d_b, size);
        cudaMalloc((void**)&d_c, size);

        /* 把本地的数组拷贝进GPU内存 */
        cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);
   
        /* 定义一个GPU运算块 由 10个运算线程组成 */
        dim3 DimBlock = N;
        /* 通知GPU用10个线程执行函数vectorADD */
        vectorADD<<<1, DimBlock>>>(d_a, d_b, d_c);
        /* 将GPU运算完的结果复制回本地 */
        cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);
        
        /* 释放GPU的内存 */
        cudaFree(d_a);
        cudaFree(d_b);
        cudaFree(d_c);

        /* 验证计算结果 */
        for(int j=0; j<N; j++)
                printf("%d ", h_c[j]);
        printf("\n");
}

如果你想在 CLion 中编写和运行 CUDA 代码,需要进行以下几个步骤: 1. 安装 CUDA 工具包。如果你还没有安装 CUDA,可以去 NVIDIA 官网下载对应版本的 CUDA 工具包并按照说明进行安装。 2. 在 CLion 中设置 CUDA 工具链。打开 CLion,依次选择 "File" -> "Settings" -> "Build, Execution, Deployment" -> "Toolchains"。在 "CMake" 区域下,点击 "Add" 按钮,然后选择 "CUDA"。在弹出的对话框中,设置 CUDA 工具包的路径和版本号等信息。 3. 创建一个新的 CUDA 项目。依次选择 "File" -> "New Project" -> "C++ Executable"。在 "Project type" 区域下,选择 "CUDA Executable"。然后按照提示设置项目的名称、路径和其他选项。 4. 编写 CUDA 代码。在 CLion 中,可以像编写普通的 C++ 代码一样编写 CUDA 代码。在 CUDA 代码中,你需要使用 CUDA 特有的语法和函数。例如,你需要使用 `__global__` 关键字来声明 CUDA 设备函数。 5. 构建和运行 CUDA 项目。在 CLion 中,可以使用内置的 CMake 工具来构建 CUDA 项目。构建成功后,你就可以通过运行可执行文件来在 CUDA 设备上运行代码了。 需要注意的是,在 CLion 中编写和运行 CUDA 代码需要一些特殊的设置和步骤,如果你不熟悉 CUDA 开发和 CLion 的使用方法,可能会遇到一些问题。建议在开始之前先阅读相关的文档和教程,以便更好地理解和掌握 CUDA 在 CLion 中的使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值