C语言之结构数组图书管理 /*包含多本书的图书目录*/#include#define MAXBKS 2 //定义最多容纳的图书册数struct book // 结构体名为bool{ char title[50]; char author[50]; float value;};int main(){ struct book library[MAXBK
文章标题 最大流最小割定理在一个网络流中,能够从源点s到达汇点t的最大流量,等于,如果从网络中移除就能够导致网络流中断的边的集合的最小容量和 水流管道的最大流量(流动的水量)由最细的管子容量决定。对于每条边(u,v),有一个*容量*c(u,v) 对于每条边(u,v),有一个*流量*f(u,v). 网络流的三个性质: 1、容量限制: f[u,v]<=c[u,v] 2、反对称性:f[u,v] =
函数模版与类模版template 函数模版功能相同,类型不同templeate<模版参数表>类型名 函数名(参数表){ 函数的定义}#include <iostream>using namespace std;template <typename myT> myT mymin(myT a, myT b){ return a < b ? a : b;}int main(){ int a = 2,b
1042. 字符统计(20) **1042. 字符统计(20)请**编写程序,找出一段给定文字中出现最频繁的那个英文字母。输入格式:输入在一行中给出一个长度不超过1000的字符串。字符串由ASCII码表中任意可见字符及空格组成,至少包含1个英文字母,以回车结束(回车不算在内)。输出格式:在一行中输出出现频率最高的那个英文字母及其出现次数,其间以空格分隔。如果有并列,则输出按字母序最小的那个字母。统计时不区分大小写,输出小写字母。
1043. 输出PATest(20) 1043. 输出PATest(20)给定一个长度不超过10000的、仅由英文字母构成的字符串。请将字符重新调整顺序,按“PATestPATest….”这样的顺序输出,并忽略其它字符。当然,六种字符的个数不一定是一样多的,若某种字符已经输出完,则余下的字符仍按PATest的顺序打印,直到所有字符都被输出。输入格式:输入在一行中给出一个长度不超过10000的、仅由英文字母构成的非空字符串。输出格式:在一
1061. 判断题(15) 1061. 判断题(15)判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分。输入格式:输入在第一行给出两个不超过100的正整数N和M,分别是学生人数和判断题数量。第二行给出M个不超过5的正整数,是每道题的满分值。第三行给出每道题对应的正确答案,0代表“非”,1代表“是”。随后N行,每行给出一个学生的解答。数字间均以空格分隔。输出格式:按照输入的顺序输出每个学生的得分
1046. 划拳(15) 1046. 划拳(15)划拳是古老中国酒文化的一个有趣的组成部分。酒桌上两人划拳的方法为:每人口中喊出一个数字,同时用手比划出一个数字。如果谁比划出的数字正好等于两人喊出的数字之和,谁就赢了,输家罚一杯酒。两人同赢或两人同输则继续下一轮,直到唯一的赢家出现。下面给出甲、乙两人的划拳记录,请你统计他们最后分别喝了多少杯酒。输入格式:输入第一行先给出一个正整数N(<=100),随后N行,每行给出一轮划拳
PAT 1066图像过滤 C 1066. 图像过滤(15)图像过滤是把图像中不重要的像素都染成背景色,使得重要部分被凸显出来。现给定一幅黑白图像,要求你将灰度值位于某指定区间内的所有像素颜色都用一种指定的颜色替换。输入格式:输入在第一行给出一幅图像的分辨率,即两个正整数M和N(0 < M, N <= 500),另外是待过滤的灰度值区间端点A和B(0 <= A < B <= 255)、以及指定的替换灰度值。随后M行,每行给出N个像
tf函数 tf.slice(inputs,begin,size,name=”) import tensorflow as tf import numpy as np x=[[1,2,3],[4,5,6]] y=np.arange(24).reshape([2,3,4]) sess=tf.Session() begin_x=[1,0]
c++知识复习 1.类在C++中,一般将类的声明放在头文件,将类的实现放在源程序文件中//rectangle.h#ifndef __RECTANGLE_H__ #define __RECTANGLE_H__//上两句话意思是若未定义__RECTANGLE_H__,则定义class Rectangle{private: int length, width,height;public:
1004. 成绩排名 python #coding=utf-8n=raw_input("")score=[]scores=[]for i in xrange(int(n)): stu=raw_input() stu=stu.split(' ') score.append(stu)# print score# print len(score)for x in score: scores.appe
PAT1002 写出这个数 int《=》string #include <iostream>#include<stdio.h>#include<string>#include<sstream>using namespace std;string int_to_string(int n){ostringstream stream;stream<<n;return stream.str();}int main(){ int
PAT1001 C++ 千位逗号 #include <iostream>#include<stdio.h>using namespace std;int main(){ int a,b,sum; while(cin>>a>>b) { char str[20]; int mycount=1,temp; sum=a+b; if (sum<0) { cout<<
PAT1001 C++ #include <iostream>#include<stdio.h>using namespace std;int main(){ int a,b,sum; while(cin>>a>>b) { char str[20]; int mycount=1,temp; sum=a+b; if (sum<0) { cout<<
文章标题 tf.gradienttensorflow中有一个计算梯度的函数tf.gradients(ys, xs),要注意的是,xs中的x必须要与ys相关,不相关的话,会报错。 代码中定义了两个变量w1, w2, 但res只与w1相关import tensorflow as tfw1 = tf.Variable([[1,2]])w2 = tf.Variable([[3,4]])res = tf.mat
TF2:基本模型 src website:https://github.com/aymericdamien/TensorFlow-Examples/ 主要介绍下近邻分类,线性回归,逻辑回归线性回归 简单来说,就是由一堆数据需要用一个线性函数拟合它们 大致过程就是用梯度下降算法最小化损失函数#coding=utf-8#线性回归import tensorflow as tfimport numpyimpor
TF教程1:简要介绍 hello world#coding=utf-8import tensorflow as tfhello=tf.constant("htllo world")sess=tf.Session()print sess.run(hello)sess.close()基础运算#coding=utf-8import tensorflow as tfsess=tf.Session()a=tf.cons
MDN混合密度神经网络 原文地址:http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/ 假设我们用神经网络拟合这些数据,结果如下,效果不错。 But,只适用于1输入1输出(one-to-noe),多输入1输出(many to one)的情况,如果我们将数据集倒转(invert)一下 我们看到训练的神经网络只会拟合这些数