yolov5训练自己的数据集 在数据集myVOC.yaml文件中将红框内的数据换成自己的数据集路径。训练之后的模型存储在runs/train/exp中。首先在yolov5s.yaml文件中。红框内修改为自己数据集中的类别个数。
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. 代码运行头部,添加以下两行代码,解决。在调试yolov5时出现的问题。
2021-03-08 解决报错:TypeError: Caught TypeError in DataLoader worker process 0.在这个错误之后还有一个错误,我是修改了一下加载的数据集的处理方式,然后报错的,具体的报错如下:然后我查看了一下自己的数据和设置的数据处理,RandomCrop()函数和RandomResizedCrop()函数的size设置出错,我设置的图片大小是112*224,但是这里的size我设置成了224,所以出错了,修改之后就成功运行了解决报错:TypeError: Caught
数据挖掘-金融风控-模型融合05 金融风控-模型融合模型融合是比赛后期上分的重要手段,特别是多人组队学习的比赛中,将不同队友的模型进行融合,可能会收获到意象不到的效果,往往模型相差越大且模型表现都不错的情况下,模型融合后结果会有很大的提升,主要的融合人方式有:平均简单平均加权平均投票简单投票法加权投票综合排序融合log融合stacking构建多层模型,并利用预测结果在拟合预测blending选取部分数据预测训练得到预测结果作为新特征,代入剩下的数据中预测stacking、blending详解stacki
数据挖掘-金融风控-建模调参 数据挖掘-金融风控-建模调参在模型预测中一般用的预测模型是逻辑回归模型、树模型、集成模型;调参的方法一般有贪心调参方法、网格调参方法、贝叶斯调参方法。1、导入数据import pandas as pdimport numpy as npimport warningsimport osimport seaborn as snsimport matplotlib.pyplot as plt"""sns 相关设置@return:"""# 声明使用 Seaborn 样式sns.set()
数据挖掘-金融风控 数据挖掘-金融风控特征工程数据读入import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport datetimefrom tqdm import tqdmfrom sklearn.preprocessing import LabelEncoderfrom sklearn.feature_selection import SelectKBestfrom s
数据挖掘-金融风控-初遇 数据挖掘-金融风控(二)对数据进行探索性分析在进行数据分析之前可以先对数据集进行了解查看数据集的列数据train.columns列名意义‘id’,贷款清单分配的唯一信用证标识‘loanAmnt’贷款金额#‘term’,贷款期限‘interestRate’,贷款利率‘installment’,分期付款金额‘grade’贷款等级‘subGrade’贷款等级之子级‘employmentTitle’就业职称‘empl
数据挖掘-金融风控-贷款违约预测 数据挖掘-金融风控-贷款违约预测天池赛事数据下载链接:天池赛事下载数据查看分析数据赛题理解对所给数据集进行分析预测,根据用户的信用贷款信息,分析用户是否能够再次贷款,本质是将数据用户进行分类。评测指标为AUCimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport datetimeimport warningswarnings.filterwar
力扣(四)查找-对撞指针 对撞指针leetcode1、两数之和leetcode 1、两数之和leetcode1、两数之和题目描述给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: # 记录索引
力扣刷题(三)查找-查找表 查找表考虑的基本数据结构第一类: 查找有无–set元素’a’是否存在,通常用set:集合set只存储键,而不需要对应其相应的值。 set中的键不允许重复第二类: 查找对应关系(键值对应)–dict元素’a’出现了几次:dict–>字典 dict中的键不允许重复第三类: 改变映射关系–map通过将原有序列的关系映射统一表示为其他leetcode 202. 快乐数题目描述:「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为
力扣刷题(二)动态规划 动态规划最长回文子串给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。解题思路第一步:确定动态规划状态与上面两题不同的是,这个题目必须用二维的dp数组来记录状态,主要原因就是子串有回文的限制。用两个指针来记录子串的位置可以很好的实现子串的回文要求,又因为后结果需要返回的是子串,这里不同于之前题目的用dp保存长度,我们必须找到具体哪个部分符合回文子串的要求。这里插一句,其实也有求回文子串长度的题目Leetcode516. 长回文子序列,如果有兴趣可以看一 下
力扣入门刷题 力扣入门刷题一直久仰力扣(leetcode),但从未尝试过,所以趁着有时间,来搞一搞,我是小白第一个任务是分治算法:分开治理小问题,合并解决大问题!分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。50. Pow(x, n)实现 pow(x, n) ,即计算 x 的 n 次幂函数。class Solution: def myPow(self, x: float, n: int) -> fl
基于决策树算法的分类预测 决策树分类预测库函数导入## 基础函数库 import numpy as np ## 导入画图库 import matplotlib.pyplot as plt import seaborn as sns ## 导入决策树模型函数 from sklearn.tree import DecisionTreeClassifier from sklearn import tree 训练模型##Demo演示LogisticRegression分类## 构造
数据挖掘中遇到的错误二 from sklearn.metrics import plot_confusion_matrix, plot_roc_curve在数据调试过程中出现,这个无法从Sklearn.metrics中导入plot_confusion_matrix模块的,可以升级一下scikit-learn,低于0.22版本的不支持,所以直接在命令行中 升级即可conda update scikit-learn...