Python常见数据结构整理
Python中常见的数据结构可以统称为容器(container)。序列(如列表和元组)、映射(如字典)以及集合(set)是三类主要的容器。
一、序列(列表、元组和字符串)
序列中的每个元素都有自己的编号。Python中有6种内建的序列。其中列表和元组是最常见的类型。其他包括字符串、Unicode字符串、buffer对象和xrange对象。下面重点介绍下列表、元组和字符串。
1、列表
列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。
(1)、创建
通过下面的方式即可创建一个列表:
1
2
3
4
|
list1
=
[
'hello'
,
'world'
]
print
list1
list2
=
[
1
,
2
,
3
]
print
list2
|
输出:
['hello', 'world']
[1, 2, 3]
可以看到,这中创建方式非常类似于javascript中的数组。
(2)、list函数
通过list函数(其实list是一种类型而不是函数)对字符串创建列表非常有效:
1
2
|
list3
=
list
(
"hello"
)
print
list3
|
输出:
['h', 'e', 'l', 'l', 'o']
2、元组
元组与列表一样,也是一种序列,唯一不同的是元组不能被修改(字符串其实也有这种特点)。
(1)、创建
1
2
3
4
5
6
|
t1
=
1
,
2
,
3
t2
=
"jeffreyzhao"
,
"cnblogs"
t3
=
(
1
,
2
,
3
,
4
)
t4
=
()
t5
=
(
1
,)
print
t1,t2,t3,t4,t5
|
输出:
(1, 2, 3) ('jeffreyzhao', 'cnblogs') (1, 2, 3, 4) () (1,)
从上面我们可以分析得出:
a、逗号分隔一些值,元组自动创建完成;
b、元组大部分时候是通过圆括号括起来的;
c、空元组可以用没有包含内容的圆括号来表示;
d、只含一个值的元组,必须加个逗号(,);
(2)、tuple函数
tuple函数和序列的list函数几乎一样:以一个序列(注意是序列)作为参数并把它转换为元组。如果参数就算元组,那么该参数就会原样返回:
1
2
3
4
5
6
7
8
|
t1
=
tuple
([
1
,
2
,
3
])
t2
=
tuple
(
"jeff"
)
t3
=
tuple
((
1
,
2
,
3
))
print
t1
print
t2
print
t3
t4
=
tuple
(
123
)
print
t45
|
输出:
(1, 2, 3)
('j', 'e', 'f', 'f')
(1, 2, 3)
Traceback (most recent call last):
File "F:\Python\test.py", line 7, in <module>
t4=tuple(123)
TypeError: 'int' object is not iterable
3、字符串
(1)创建
1
2
3
4
5
|
str1
=
'Hello world'
print
str1
print
str1[
0
]
for
c
in
str1:
print
c
|
输出:
Hello world
H
H
e
l
l
o
w
o
r
l
d
(2)格式化
字符串格式化使用字符串格式化操作符即百分号%来实现。
1
2
|
str1
=
'Hello,%s'
%
'world.'
print
str1
|
格式化操作符的右操作数可以是任何东西,如果是元组或者映射类型(如字典),那么字符串格式化将会有所不同。
1
2
3
4
5
6
|
strs
=
(
'Hello'
,
'world'
)
#元组
str1
=
'%s,%s'
%
strs
print
str1
d
=
{
'h'
:
'Hello'
,
'w'
:
'World'
}
#字典
str1
=
'%(h)s,%(w)s'
%
d
print
str1
|
输出:
Hello,world
Hello,World
注意:如果需要转换的元组作为转换表达式的一部分存在,那么必须将它用圆括号括起来:
1
2
|
str1
=
'%s,%s'
%
'Hello'
,
'world'
print
str1
|
输出:
Traceback (most recent call last):
File "F:\Python\test.py", line 2, in <module>
str1='%s,%s' % 'Hello','world'
TypeError: not enough arguments for format string
如果需要输出%这个特殊字符,毫无疑问,我们会想到转义,但是Python中正确的处理方式如下:
1
2
|
str1
=
'%s%%'
%
100
print
str1
|
输出:100%
对数字进行格式化处理,通常需要控制输出的宽度和精度:
1
2
3
4
5
6
7
|
from
math
import
pi
str1
=
'%.2f'
%
pi
#精度2
print
str1
str1
=
'%10f'
%
pi
#字段宽10
print
str1
str1
=
'%10.2f'
%
pi
#字段宽10,精度2
print
str1
|
输出:
3.14
3.141593
3.14
字符串格式化还包含很多其他丰富的转换类型,可参考官方文档。
Python中在string模块还提供另外一种格式化值的方法:模板字符串。它的工作方式类似于很多UNIX Shell里的变量替换,如下所示:
1
2
3
4
|
from
string
import
Template
str1
=
Template(
'$x,$y!'
)
str1
=
str1.substitute(x
=
'Hello'
,y
=
'world'
)
print
str1
|
输出:
Hello,world!
如果替换字段是单词的一部分,那么参数名称就必须用括号括起来,从而准确指明结尾:
1
2
3
4
|
from
string
import
Template
str1
=
Template(
'Hello,w${x}d!'
)
str1
=
str1.substitute(x
=
'orl'
)
print
str1
|
输出:
Hello,world!
如要输出$符,可以使用$$输出:
1
2
3
4
|
from
string
import
Template
str1
=
Template(
'$x$$'
)
str1
=
str1.substitute(x
=
'100'
)
print
str1
|
输出:100$
除了关键字参数之外,模板字符串还可以使用字典变量提供键值对进行格式化:
1
2
3
4
5
|
from
string
import
Template
d
=
{
'h'
:
'Hello'
,
'w'
:
'world'
}
str1
=
Template(
'$h,$w!'
)
str1
=
str1.substitute(d)
print
str1
|
输出:
Hello,world!
除了格式化之外,Python字符串还内置了很多实用方法,可参考官方文档,这里不再列举。
4、通用序列操作(方法)
从列表、元组以及字符串可以“抽象”出序列的一些公共通用方法(不是你想像中的CRUD),这些操作包括:索引(indexing)、分片(sliceing)、加(adding)、乘(multiplying)以及检查某个元素是否属于序列的成员。除此之外,还有计算序列长度、最大最小元素等内置函数。
(1)索引
1
2
3
4
5
6
|
str1
=
'Hello'
nums
=
[
1
,
2
,
3
,
4
]
t1
=
(
123
,
234
,
345
)
print
str1[
0
]
print
nums[
1
]
print
t1[
2
]
|
输出
H
2
345
索引从0(从左向右)开始,所有序列可通过这种方式进行索引。神奇的是,索引可以从最后一个位置(从右向左)开始,编号是-1:
1
2
3
4
5
6
|
str1
=
'Hello'
nums
=
[
1
,
2
,
3
,
4
]
t1
=
(
123
,
234
,
345
)
print
str1[
-
1
]
print
nums[
-
2
]
print
t1[
-
3
]
|
输出:
o
3
123
(2)分片
分片操作用来访问一定范围内的元素。分片通过冒号相隔的两个索引来实现:
1
2
3
4
5
6
7
8
|
nums
=
range
(
10
)
print
nums
print
nums[
1
:
5
]
print
nums[
6
:
10
]
print
nums[
1
:]
print
nums[
-
3
:
-
1
]
print
nums[
-
3
:]
#包括序列结尾的元素,置空最后一个索引
print
nums[:]
#复制整个序列
|
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4]
[6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[7, 8]
[7, 8, 9]
不同的步长,有不同的输出:
1
2
3
4
5
6
7
8
|
nums
=
range
(
10
)
print
nums
print
nums[
0
:
10
]
#默认步长为1 等价于nums[1:5:1]
print
nums[
0
:
10
:
2
]
#步长为2
print
nums[
0
:
10
:
3
]
#步长为3
##print nums[0:10:0] #步长为0
print
nums[
0
:
10
:
-
2
]
#步长为-2
|
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, 6, 8]
[0, 3, 6, 9]
[]
(3)序列相加
1
2
3
4
5
6
7
|
str1
=
'Hello'
str2
=
' world'
print
str1
+
str2
num1
=
[
1
,
2
,
3
]
num2
=
[
2
,
3
,
4
]
print
num1
+
num2
print
str1
+
num1
|
输出:
Hello world
[1, 2, 3, 2, 3, 4]
Traceback (most recent call last):
File "F:\Python\test.py", line 7, in <module>
print str1+num1
TypeError: cannot concatenate 'str' and 'list' objects
(4)乘法
1
2
3
4
5
6
|
print
[
None
]
*
10
str1
=
'Hello'
print
str1
*
2
num1
=
[
1
,
2
]
print
num1
*
2
print
str1
*
num1
|
输出:
[None, None, None, None, None, None, None, None, None, None]
HelloHello
[1, 2, 1, 2]
Traceback (most recent call last):
File "F:\Python\test.py", line 5, in <module>
print str1*num1
TypeError: can't multiply sequence by non-int of type 'list'
(5)成员资格
in运算符会用来检查一个对象是否为某个序列(或者其他类型)的成员(即元素):
1
2
3
4
5
|
str1
=
'Hello'
print
'h'
in
str1
print
'H'
in
str1
num1
=
[
1
,
2
]
print
1
in
num1
|
输出:
False
True
True
(6)长度、最大最小值
通过内建函数len、max和min可以返回序列中所包含元素的数量、最大和最小元素。
1
2
3
4
5
6
7
8
|
str1
=
'Hello'
print
len
(str1)
print
max
(str1)
print
min
(str1)
num1
=
[
1
,
2
,
1
,
4
,
123
]
print
len
(num1)
print
max
(num1)
print
min
(num1)
|
输出:
5
o
H
5
123
1
二、映射(字典)
映射中的每个元素都有一个名字,如你所知,这个名字专业的名称叫键。字典(也叫散列表)是Python中唯一内建的映射类型。
1、键类型
字典的键可以是数字、字符串或者是元组,键必须唯一。在Python中,数字、字符串和元组都被设计成不可变类型,而常见的列表以及集合(set)都是可变的,所以列表和集合不能作为字典的键。键可以为任何不可变类型,这正是Python中的字典最强大的地方。
1
2
3
4
5
6
7
8
|
list1
=
[
"hello,world"
]
set1
=
set
([
123
])
d
=
{}
d[
1
]
=
1
print
d
d[list1]
=
"Hello world."
d[set1]
=
123
print
d
|
输出:
{1: 1}
Traceback (most recent call last):
File "F:\Python\test.py", line 6, in <module>
d[list1]="Hello world."
TypeError: unhashable type: 'list'
2、自动添加
即使键在字典中并不存在,也可以为它分配一个值,这样字典就会建立新的项。
3、成员资格
表达式item in d(d为字典)查找的是键(containskey),而不是值(containsvalue)。
Python字典强大之处还包括内置了很多常用操作方法,可参考官方文档,这里不再列举。
思考:根据我们使用强类型语言的经验,比如C#和Java,我们肯定会问Python中的字典是线程安全的吗?
三、集合
集合(Set)在Python 2.3引入,通常使用较新版Python可直接创建,如下所示:
strs=set(['jeff','wong','cnblogs']) nums=set(range(10))
看上去,集合就是由序列(或者其他可迭代的对象)构建的。集合的几个重要特点和方法如下:
1、副本是被忽略的
集合主要用于检查成员资格,因此副本是被忽略的,如下示例所示,输出的集合内容是一样的。
1
2
3
4
5
|
set1
=
set
([
0
,
1
,
2
,
3
,
0
,
1
,
2
,
3
,
4
,
5
])
print
set1
set2
=
set
([
0
,
1
,
2
,
3
,
4
,
5
])
print
set2
|
输出如下:
set([0, 1, 2, 3, 4, 5])
set([0, 1, 2, 3, 4, 5])
2、集合元素的顺序是随意的
这一点和字典非常像,可以简单理解集合为没有value的字典。
1
2
|
strs
=
set
([
'jeff'
,
'wong'
,
'cnblogs'
])
print
strs
|
输出如下:
set(['wong', 'cnblogs', 'jeff'])
3、集合常用方法
a、交集union
1
2
3
4
5
6
|
set1
=
set
([
1
,
2
,
3
])
set2
=
set
([
2
,
3
,
4
])
set3
=
set1.union(set2)
print
set1
print
set2
print
set3
|
输出:
set([1, 2, 3])
set([2, 3, 4])
set([1, 2, 3, 4])
union操作返回两个集合的并集,不改变原有集合。使用按位与(OR)运算符“|”可以得到一样的结果:
1
2
3
4
5
6
|
set1
=
set
([
1
,
2
,
3
])
set2
=
set
([
2
,
3
,
4
])
set3
=
set1|set2
print
set1
print
set2
print
set3
|
输出和上面union操作一模一样的结果。
其他常见操作包括&(交集),<=,>=,-,copy()等等,这里不再列举。
1
2
3
4
5
6
7
8
9
10
|
set1
=
set
([
1
,
2
,
3
])
set2
=
set
([
2
,
3
,
4
])
set3
=
set1&set2
print
set1
print
set2
print
set3
print
set3.issubset(set1)
set4
=
set1.copy()
print
set4
print
set4
is
set1
|
输出如下:
set([1, 2, 3])
set([2, 3, 4])
set([2, 3])
True
set([1, 2, 3])
False
b、add和remove
和序列添加和移除的方法非常类似,可参考官方文档:
1
2
3
4
5
6
7
8
9
|
set1
=
set
([
1
])
print
set1
set1.add(
2
)
print
set1
set1.remove(
2
)
print
set1
print
set1
print
29
in
set1
set1.remove(
29
)
#移除不存在的项
|
输出:
set([1])
set([1, 2])
set([1])
set([1])
False
Traceback (most recent call last):
File "F:\Python\test.py", line 9, in <module>
set1.remove(29) #移除不存在的项
KeyError: 29
4、frozenset
集合是可变的,所以不能用做字典的键。集合本身只能包含不可变值,所以也就不能包含其他集合:
1
2
3
|
set1
=
set
([
1
])
set2
=
set
([
2
])
set1.add(set2)
|
输出如下:
Traceback (most recent call last):
File "F:\Python\test.py", line 3, in <module>
set1.add(set2)
TypeError: unhashable type: 'set'
可以使用frozenset类型用于代表不可变(可散列)的集合:
1
2
3
4
|
set1
=
set
([
1
])
set2
=
set
([
2
])
set1.add(
frozenset
(set2))
print
set1
|
输出:
set([1, frozenset([2])])