HashMap源码分析(JDK1.8)

在这里插入图片描述
哈希算法不过是一个更为复杂的运算,它的输入可以是字符串,可以是数据,可以是任何文件,经过哈希运算后,变成一个固定长度的输出,该输出就是哈希值。但是哈希算法有一个很大的特点,就是你不能从结果推算出输入。

1.概述

HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现。HashMap 允许 null 键和 null 值,在计算哈键的哈希值时,null 键哈希值为 0。HashMap 并不保证键值对的顺序,这意味着在进行某些操作后,键值对的顺序可能会发生变化。另外,需要注意的是,HashMap 是非线程安全类,在多线程环境下可能会存在问题。

  1. 允许键值为null…它是非同步的,允许空值nulls.
  2. 一个hashmap实例有两个参数影响它的性能:初始容量和负载因子。初始容量就是在hash表创建时桶的个数;
  3. 一个HashMap实例拥有两个影响它的性能的因素:初始容量和加载因子。初始容量就是在hash表创建时桶的个数;加载因子是一种衡量哈希表所允许的最大容量的参数,也就是capacity * 加载因子,当超过此值时,哈希表将进行rehash操作,也即容量将翻1倍。

通常来说,默认的加载因子0.75可以在时间消耗和空间消耗之间取得一个较好的平衡。过高,会减少空间消耗但会增加查看消耗(表现在HashMap中的大部分操作,包括get和put)。当设置它的初始容量时,为了减少rehash的次数,所预期的元素个数以及加载因子应当被考虑到。如果初始容量比元素的个数除以加载因子的结果要大,那么将不会发生rehash操作。

原文:https://blog.csdn.net/asahinokawa/article/details/80585354

首先来个图:
HashMap的继承关系图
继承实现图。

2.实现原理

HashMap 底层是基于散列算法实现,散列算法分为散列再探测和拉链式。HashMap 则使用了拉链式的散列算法,并在 JDK 1.8 中引入了红黑树优化过长的链表。数据结构示意图如下:
在这里插入图片描述

Node<K,V>节点,是一个内部实现类:

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

它实现了Map.Entry接口。其内部的变量含义也很明确,hash值、key\value对和实现链表和红黑树所需要的指针索引。

对于拉链式的散列算法,其数据结构是由**数组+链表(或树形结构)组成。**在进行增删查等操作时,首先要定位到元素的所在桶的位置,之后再从链表中定位该元素。比如我们要查询上图结构中是否包含元素35,步骤如下:

定位元素35所处桶的位置:index = 35 % 16 = 3
在3号桶所指向的链表中继续查找,发现35在链表中。
上面就是 HashMap 底层数据结构的原理,HashMap 基本操作就是对拉链式散列算法基本操作的一层包装。不同的地方在于 JDK 1.8 中引入了红黑树,底层数据结构由数组+链表变为了数组+链表+红黑树,不过本质并未变。好了,原理部分先讲到这,接下来说说源码实现。

3.源码分析

本篇文章所分析的源码版本为 JDK 1.8。与 JDK 1.7 相比,JDK 1.8 对 HashMap 进行了一些优化。比如引入红黑树解决过长链表效率低的问题;新插入的节点自动连接到链表尾部。

3.1 构造方法

HashMap 的构造方法不多,只有四个。HashMap 构造方法做的事情比较简单,一般都是初始化一些重要变量,比如 loadFactor 和 threshold。而底层的数据结构则是延迟到插入键值对时再进行初始化。HashMap 相关构造方法如下:

public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/** 构造方法 2 */
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/** 构造方法 3 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

/** 构造方法 4 */
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

上面4个构造方法中,大家平时用的最多的应该是第一个了。第一个构造方法很简单,仅将 loadFactor 变量设为默认值。构造方法2调用了构造方法3,而构造方法3仍然只是设置了一些变量。构造方法4则是将另一个 Map 中的映射拷贝一份到自己的存储结构中来,这个方法不是很常用。

上面就是对构造方法简单的介绍,构造方法本身并没什么太多东西,所以就不说了。接下来说说构造方法所初始化的几个的变量。

3.2 HashMap的几个重要属性

我们在一般情况下,都会使用无参构造方法创建 HashMap。但当我们对时间和空间复杂度有要求的时候,使用默认值有时可能达不到我们的要求,这个时候我们就需要手动调参。在 HashMap 构造方法中,可供我们调整的参数有两个,一个是初始容量 initialCapacity,另一个负载因子 loadFactor。通过这两个设定这两个参数,可以进一步影响阈值大小。但初始阈值 threshold 仅由 initialCapacity 经过移位操作计算得出。他们的作用分别如下:
initialCapacity : HashMap 初始容量
loadFactor: 负载因子
threshold: 当前 HashMap 所能容纳键值对数量的最大值,超过这个值,则需扩容
相关代码如下:

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认初始容量,必须是2的幂次方;
 
 static final int MAXIMUM_CAPACITY = 1 << 30; 最大容量,2的e30次方;

static final float DEFAULT_LOAD_FACTOR = 0.75f; 默认负载因子0.75f;

static final int TREEIFY_THRESHOLD = 8;  当链表长度为8时,再put元素,将转为红黑树;

static final int UNTREEIFY_THRESHOLD = 6;   链表长度小于等于6时解散红黑树,转为普通链表;

static final int MIN_TREEIFY_CAPACITY = 64; 默认桶数组转红黑树时的最小容量,为4* TREEIFY_THRESHOLD=32,这里是设置的64;

几个由transient修饰的变量:

 transient Node<K,V>[] table;
 transient Set<Map.Entry<K,V>> entrySet;
 transient int size;
 transient int modCount;

由transient修饰,这代表了他们无法被序列化,而HashMap本身是实现了Serializable接口的。HashMap内有两个用于序列化的函数 readObject(ObjectInputStream s) 和 writeObject(ObjectOutputStreams),通过这个函数将table序列化。Java对象序列化操作的类是ObjectOutputStream,反序列化的类是ObjectInputStream。实际上在ObjectOutputStream中进行序列化操作的时候,会判断被序列化的对象是否自己重写了writeObject方法,如果重写了,就会调用被序列化对象自己的writeObject方法,如果没有重写,才会调用默认的序列化方法。
HashMap中,由于Entry的存放table位置是根据Key的Hash值来计算,然后存放到数组中的,对于同一个Key,在不同的JVM实现中计算得出的Hash值可能是不同的。
Hash值不同导致的结果就是:有可能一个HashMap对象的反序列化结果与序列化之前的结果不一致。即有可能序列化之前,Key=’AAA’的元素放在数组的第0个位置,而反序列化值后,根据Key获取元素的时候,可能需要从数组为2的位置来获取,而此时获取到的数据与序列化之前肯定是不同的,所以不能序列化table
因此,为了避免序列化和反序列化的不一致情况:
1 将可能会造成数据不一致的元素使用transient关键字修饰,从而避免JDK中默认序列化方法对该对象的序列化操作。不序列化的包括:Entry[] table,size,modCount。
2. 自己实现readObject和writeObject方法,从而保证序列化和反序列化结果的一致性。

默认情况下,HashMap 初始容量是16,负载因子为 0.75。这里并没有默认阈值,原因是阈值可由容量乘上负载因子计算而来(注释中有说明),即threshold = capacity * loadFactor。但当你仔细看构造方法3时,会发现阈值并不是由上面公式计算而来,而是通过一个方法算出来的。这是不是可以说明 threshold 变量的注释有误呢?还是仅这里进行了特殊处理,其他地方遵循计算公式呢?关于这个疑问,这里也先不说明,后面在分析扩容方法时,再来解释这个问题。接下来,我们来看看初始化 threshold 的方法长什么样的的,源码如下:

this.threshold = tableSizeFor(initialCapacity);  构造方法3中的阈值计算方法;
/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

上面的代码长的有点不太好看,反正我第一次看的时候不明白它想干啥。不过后来在纸上画画,知道了它的用途。总结起来就一句话:找到大于或等于 cap 的最小2的幂。我们先来看看 tableSizeFor 方法的图解:
在这里插入图片描述
上面是 tableSizeFor 方法的计算过程图,这里cap = 536,870,913 = 229 + 1,多次计算后,算出n + 1 = 1,073,741,824 = 230,即通过这个方法,找到
说完了初始阈值的计算过程,再来说说负载因子(loadFactor)。对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况(假设键值对节点均匀分布在桶数组中)。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。一般情况下,我们用默认值就可以了。

4.查找,插入,删除方法

4.1.get()查找方法解读:

首先看JDK1.8中get()源码,**参数:key,返回值:null或value;:```

public V get(Object key) {  参数:key,返回值:null或value;
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value; 调用getNode来获取node节点;
    }


final Node<K,V> getNode(int hash, Object key) {  通过hash值和key来查找并获得结点
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {    检查first或叫头节点与table相等,说明找到对应链表对应桶中位置,桶位置有(n-1)&hash算出;
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))   判断key相等时,既要hash值,又要符合equals方法;
            return first;  说明第一个节点就是要找的节点node,直接返回;
        if ((e = first.next) != null) {  当第一节点不是匹配节点(即hash值与key不匹配)向后移;
            if (first instanceof TreeNode)  当这个table节点上存储的是红黑树结构时,在根节点first上调用getTreeNode方法,在内部遍历红黑树节点,查看是否有匹配的TreeNode。
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);   返回node
            do {       //当这个table节点上存储的是链表结构时,用同样的方式去判断key是否相同。
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);  如果不匹配,则一直向next移,直到走到链表末尾;
        }
    }
    return null;
}
这里调用getNode方法来获得node节点,赋值e,如果node为空,返回null;否则,返回其value值。然后调用getNode方法。ok!


HashMap 的查找操作比较简单,查找步骤与原理篇介绍一致,即先定位键值对所在的桶的位置,然后再对链表或红黑树进行查找。我们先来看看查找过程的第一步 - 确定桶位置,其实现代码如下:
		// index = (n - 1) & hash
		first = tab[(n - 1) & hash]
这里通过(n - 1)& hash即可算出桶的在桶数组中的位置,可能有的朋友不太明白这里为什么这么做,这里简单解释一下。HashMap 中桶数组的大小 length 总是2的幂,此时,(n - 1) & hash 等价于对 length 取余。但取余的计算效率没有位运算高,所以(n - 1) & hash也是一个小的优化。
在上面源码中,除了查找相关逻辑,还有一个计算 hash 的方法。
这个方法源码如下:

```	/**
 * 计算键的 hash 值
 */

static final int hash(Object key) {
        int h;         //key为null,hash值就为0;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

注意这里是计算hash值,不是计算索引index;index用公式// index = (n - 1) & hash计算!

这样做有两个好处:我们再看一下上面求余的计算图,图中的 hash 是由键的 hashCode 产生。计算余数时,由于 n 比较小,导致hash 只有低4位参与了计算(见下图),高位的计算可以认为是无效的。这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash >>> 4)。通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。此时的计算过程如下:
在这里插入图片描述
在 Java 中,hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位。

另外一个好处重新计算 hash 可以增加 hash 的复杂度。当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了。

4.2 put()插入方法解读:

4.2.1 插入逻辑分析:
HashMap 的插入流程。首先肯定是先定位要插入的键值对属于哪个桶,定位到桶后,再判断桶是否为空。如果为空,则将键值对存入即可。如果不为空,则需将键值对接在链表最后一个位置,或者更新键值对。这就是 HashMap 的插入流程,是不是觉得很简单。当然,大家先别高兴。这只是一个简化版的插入流程,真正的插入流程要复杂不少。首先 HashMap 是变长集合,所以需要考虑扩容的问题。其次,在 JDK 1.8 中,HashMap 引入了红黑树优化过长链表,这里还要考虑多长的链表需要进行优化,优化过程又是怎样的问题。引入这里两个问题后,大家会发现原本简单的操作,现在略显复杂了。在本节中,我将先分析插入操作的源码,扩容、树化(链表转为红黑树,下同)以及其他和树结构相关的操作,随后将在独立的两小结中进行分析。接下来,先来看一下插入操作的源码:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 判断当table为null或者tab的长度为0时,即table尚未初始化,此时通过resize()方法得到初始化的table。                        
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可
    if ((p = tab[i = (n - 1) & hash]) == null)   令p=tab[i],判断是否为null
        tab[i] = newNode(hash, key, value, null);  当p为null时,表明tab[i]上没有任何元素,那么接下来就new第一个Node节点,调用newNode方法返回新节点赋值给tab[i]。
    else {  下面进入p不为null的情况,有三种情况:p为链表节点;p为红黑树节点;p是链表节点但长度为临界长度TREEIFY_THRESHOLD,再插入任何元素就要变成红黑树了。
        Node<K,V> e; K k;
        // 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;  HashMap中判断key相同的条件是key的hash相同,并且符合equals方法。这里判断了p.key是否和插入的key相等,如果相等,则将p的引用赋给e。只是把原来的value覆盖,key值不变。
            
        // 如果p为 TreeNode 红黑树节点,则调用红黑树的插入方法
        else if (p instanceof TreeNode)  
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); putTreeVal会遍历tree,判断有没有相同的key;
        else { 另两种情况:链表/链表转红黑树;
            // 对链表进行遍历,并统计链表长度
            for (int binCount = 0; ; ++binCount) {
                // 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 如果链表长度大于或等于树化阈值,则进行树化操作
                    if (binCount >= TREEIFY_THRESHOLD - 1) // 插入成功后,要判断是否需要转换为红黑树,因为插入后链表长度加1,而binCount并不包含新节点,所以判断时要将临界阈值减1。
                        treeifyBin(tab, hash);
                    break;  
                }
                
                // 条件为 true,表示当前链表包含要插入的键值对,终止遍历
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        
        // 判断要插入的键值对是否存在 HashMap 中
        if (e != null) { // existing mapping for key
            V oldValue = e.value; 覆盖操作,将原节点e上的value设置为插入的新value。
            // onlyIfAbsent 表示已经存在value;或者 oldValue 为 null 的情况下更新键值对的值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;  返回oldvalue;
        }
    }
    ++modCount;
    // 键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();   当HashMap中存在的node节点数大于threshold时,hashmap进行扩容。
    afterNodeInsertion(evict); 这里与前面的afterNodeAccess同理,是用于linkedHashMap的尾部操作,HashMap中并无实际意义。
    return null;  put操作完后,返回null;
}

插入操作的入口方法是 put(K,V),但核心逻辑在putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict)方法中。putVal 方法主要做了这么几件事情:

1.当桶数组 table 为空时,通过扩容的方式初始化 table。
2.查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值。
3.如果不存在,则将键值对链入链表中,分三种情况插入,p为链表节点;p为红黑树节点;p是链表节点但长度为临界长度TREEIFY_THRESHOLD,再插入任何元素就要变成红黑树了。
4.判断键值对数量是否大于阈值,大于的话则进行扩容操作。

以上就是 HashMap 插入的逻辑,并不是很复杂,这里就不多说了。接下来来分析一下扩容机制。

4.3 resize()扩容机制方法

在 Java 中,数组的长度是固定的,这意味着数组只能存储固定量的数据。但在开发的过程中,很多时候我们无法知道该建多大的数组合适。建小了不够用,建大了用不完,造成浪费。如果我们能实现一种变长的数组,并按需分配空间就好了。好在,我们不用自己实现变长数组,Java 集合框架已经实现了变长的数据结构。比如 ArrayList 和 HashMap。对于这类基于数组的变长数据结构,扩容是一个非常重要的操作。下面就来聊聊 HashMap 的扩容机制。

在详细分析之前,先来说一下扩容相关的背景知识:

在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量(node节点数量)超过阈值时,进行扩容。

HashMap 的扩容机制与其他变长集合的套路不太一样,HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。以上就是 HashMap 的扩容大致过程,接下来我们来看看具体的实现:

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果 table 不为空,表明已经初始化过了
    if (oldCap > 0) {
        // 当 table 容量超过容量最大值,则不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        } 
        // 按旧容量和阈值的2倍计算新容量和阈值的大小
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    } else if (oldThr > 0) // initial capacity was placed in threshold
        /*
         * 初始化时,将 threshold 的值赋值给 newCap,
         * HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
         */ 
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        /*
         * 调用无参构造方法时,桶数组容量为默认容量,
         * 阈值为默认容量与默认负载因子乘积
         */
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    
    // newThr 为 0 时,按阈值计算公式进行计算
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 创建新的桶数组,桶数组的初始化也是在这里完成的
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 重新映射时,需要对红黑树进行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 遍历链表,并将链表节点按原顺序进行分组
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将分组后的链表映射到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;  返回扩容后的新桶数组;
}

上面的源码有点长,希望大家耐心看懂它的逻辑。上面的源码总共做了3件事,分别是:

1.计算新桶数组的容量 newCap 和新阈值 newThr
2.根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
3.将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。

jdk1.7与jdk1.8中扩容机制不同的:
jdk1.8优化了求hash的算法;

注意:jdk1.8是怎样找到数组下标的:

扩容前后:
在这里插入图片描述

jdk1.8链表元素重新映射到新数组中,元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
在这里插入图片描述
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样rehash:

void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity); 重新计算在新数组中的hash值,确定位置;
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

只需要看看原来的hash值新增的那个bit是1还是0就好了,**是0的话索引没变,是1的话索引变成“原索引+oldCap”,**可以看看下图为16扩充为32的resize示意图:
在这里插入图片描述
这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。

jdk1.8重新映射后,链表中的节点顺序并未发生变化,还是保持了扩容前的顺序,JDK 1.8 版本下 HashMap 扩容效率要高于之前版本。如果大家看过 JDK 1.7 的源码会发现,
JDK 1.7 为了防止因 hash 碰撞引发的拒绝服务攻击,在计算 hash 过程中引入随机hashseed种子。以增强 hash 的随机性,使得键值对均匀分布在桶数组中。
在扩容过程中,相关方法会根据容量判断是否需要生成新的随机种子,并重新计算所有节点的 hash。而在 JDK 1.8 中,则通过引入红黑树替代了该种方式。从而避免了多次计算 hash 的操作,提高了扩容效率。

4.3.1 **链表树化、红黑树链化与拆分

***JDK 1.8 对 HashMap 实现进行了改进。最大的改进莫过于在引入了红黑树处理频繁的碰撞,代码复杂度也随之上升。比如,以前只需实现一套针对链表操作的方法即可。而引入红黑树后,需要另外实现红黑树相关的操作。***红黑树是一种自平衡的二叉查找树,本身就比较复杂。

在扩容过程中,树化要满足两个条件:

1.链表长度大于等于 TREEIFY_THRESHOLD=8;
2.桶数组容量大于等于 MIN_TREEIFY_CAPACITY

第一个条件比较好理解,这里就不说了。这里来说说加入第二个条件的原因,个人觉得原因如下:

当桶数组容量比较小时,键值对节点 hash 的碰撞率可能会比较高,进而导致链表长度较长。这个时候应该优先扩容,而不是立马树化。毕竟高碰撞率是因为桶数组容量较小引起的,这个是主因。容量小时,优先扩容可以避免一些列的不必要的树化过程。**因为,桶容量较小时,扩容会比较频繁,扩容时需要拆分红黑树并重新映射。****所以在桶容量比较小的情况下,将长链表转成红黑树是一件吃力不讨好的事。

回到上面的源码中,我们继续看一下 treeifyBin 方法。该方法主要的作用是将普通链表转成为由 TreeNode 型节点组成的链表,并在最后调用 treeify 是将该链表转为红黑树。TreeNode 继承自 Node 类,所以 TreeNode 仍然包含 next 引用,原链表的节点顺序最终通过 next 引用被保存下来。我们假设树化前,链表结构如下:
在这里插入图片描述
HashMap 在设计之初,并没有考虑到以后会引入红黑树进行优化。所以并没有像 TreeMap 那样,要求键类实现 comparable 接口或提供相应的比较器。但由于树化过程需要比较两个键对象的大小,在键类没有实现 comparable 接口的情况下,怎么比较键与键之间的大小了就成了一个棘手的问题。为了解决这个问题,HashMap 是做了三步处理,确保可以比较出两个键的大小,如下:

1.比较键与键之间 hash 的大小,如果 hash 相同,继续往下比较
2.检测键类是否实现了 Comparable 接口,如果实现调用 compareTo 方法进行比较
3.如果仍未比较出大小,就需要进行仲裁了,仲裁方法为 tieBreakOrder(看源码)

通过上面三次比较,最终就可以比较出孰大孰小。比较出大小后就可以构造红黑树了,最终构造出的红黑树如下:
在这里插入图片描述
橙色的箭头表示 TreeNode 的 next 引用。由于空间有限,prev 引用未画出。可以看出,链表转成红黑树后,原链表的顺序仍然会被引用仍被保留了(红黑树的根节点会被移动到链表的第一位),我们仍然可以按遍历链表的方式去遍历上面的红黑树。这样的结构为后面红黑树的切分以及红黑树转成链表做好了铺垫。

红黑树拆分并映射:
扩容后,普通节点需要重新映射,红黑树节点也不例外。按照一般的思路,我们可以先把红黑树转成链表,之后再重新映射链表即可。这种处理方式是大家比较容易想到的,但这样做会损失一定的效率。不同于上面的处理方式,HashMap 实现的思路则是:在将普通链表转成红黑树时,HashMap 通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。这样就避免了将红黑树转成链表后再进行映射,无形中提高了效率。

以上就是红黑树拆分的逻辑,下面看一下具体实现吧:
// 红黑树转链表阈值

static final int UNTREEIFY_THRESHOLD = 6;

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    /* 
     * 红黑树节点仍然保留了 next 引用,故仍可以按链表方式遍历红黑树。
     * 下面的循环是对红黑树节点进行分组,与上面类似
     */
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }

    if (loHead != null) {
        // **如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表**
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            /* 
             * hiHead == null 时,表明扩容后,
             * 所有节点仍在原位置,树结构不变,无需重新树化
             */
            if (hiHead != null) 
                loHead.treeify(tab);
        }
    }
    // 与上面类似
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

从源码上可以看得出,重新映射红黑树的逻辑和重新映射链表的逻辑基本一致。不同的地方在于,重新映射后,会将红黑树拆分成两条由 TreeNode 组成的链表。如果链表长度小于 UNTREEIFY_THRESHOLD,则将链表转换成普通链表。否则根据条件重新将 TreeNode 链表树化。举个例子说明一下,假设扩容后,重新映射上图的红黑树,映射结果如下:
在这里插入图片描述
红黑树链化
前面说过,红黑树中仍然保留了原链表节点顺序。有了这个前提,再将红黑树转成链表就简单多了,仅需将 TreeNode 链表转成 Node 类型的链表即可。相关代码如下:

final Node<K,V> untreeify(HashMap<K,V> map) {
    Node<K,V> hd = null, tl = null;
    // 遍历 TreeNode 链表,并用 Node 替换
    for (Node<K,V> q = this; q != null; q = q.next) {
        // 替换节点类型
        Node<K,V> p = map.replacementNode(q, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;
}

Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
    return new Node<>(p.hash, p.key, p.value, next);
}

完结!

3.5 remove()删除方法解析

HashMap 的删除操作并不复杂,仅需三个步骤即可完成。第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。相关源码如下:

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        // 1. 定位桶位置
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {  
            // 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 2. 遍历链表,找到待删除节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        
        // 3. 删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

完结!

3.6 其他

前面的内容分析了 HashMap 的常用操作及相关的源码,本节内容再补充一点其他方面的东西。

被 transient 所修饰 table 变量
如果大家细心阅读 HashMap 的源码,会发现桶数组 table 被申明为 transient。transient 表示易变,即无法序列化的意思,在 Java 中,被该关键字修饰的变量不会被默认的序列化机制序列化。我们再回到源码中,考虑一个问题:桶数组 table 是 HashMap 底层重要的数据结构,不序列化的话,别人还怎么还原呢?

这里简单说明一下吧,HashMap 并没有使用默认的序列化机制,而是通过实现readObject/writeObject两个方法自定义了序列化的内容。这样做是有原因的,试问一句,HashMap 中存储的内容是什么?不用说,大家也知道是键值对。所以只要我们把键值对序列化了,我们就可以根据键值对数据重建 HashMap。有的朋友可能会想,序列化 table 不是可以一步到位,后面直接还原不就行了吗?这样一想,倒也是合理。但序列化 talbe 存在着两个问题:

table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误。
以上两个问题中,第一个问题比较好理解,第二个问题解释一下。HashMap 的get/put/remove等方法第一步就是根据 hash 找到键所在的桶位置,但如果键没有覆写 hashCode 方法,计算 hash 时最终调用 Object 中的 hashCode 方法。但 Object 中的 hashCode 方法是 native 型的,不同的 JVM 下,可能会有不同的实现,产生的 hash 可能也是不一样的。也就是说同一个键在不同平台下可能会产生不同的 hash,此时再对在同一个 table 继续操作,就会出现问题。

综上所述,故HashMap 不应序列化 table ,而是可以序列化key/value对。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值