【线段树】PKU2777 区间更新区间询问(位优化)

Count Color
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 34059 Accepted: 10269

Description

Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem. 

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board: 

1. "C A B C" Color the board from segment A to segment B with color C. 
2. "P A B" Output the number of different colors painted between segment A and segment B (including). 

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your. 

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

Sample Input

2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2

Sample Output

2
1

Source


注意两种更新和询问方式等价

#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
int COLOR[40] = {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
                 , 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912
                };
struct Node
{
    int l, r;
    int mid;
    int color;
    bool cover;
};
Node tree[N * 4];
int getcolor(int n)
{
    int sum = 0;
    while (n)
    {
        if (n & 1)
            sum++;
        n >>= 1;
    }
    return sum;
}
void relax(int id)
{
    if (tree[id].cover)
    {
        tree[id << 1].cover = tree[id << 1 | 1].cover = true;
        tree[id << 1].color = tree[id << 1 | 1].color = tree[id].color;
        tree[id].cover = false;
    }
}
void build(int id, int l, int r)
{
    Node &t = tree[id];
    t.l = l;
    t.r = r;
    t.color = COLOR[1];
    t.cover = false;
    t.mid = (l + r) >> 1;
    if (l == r)
        return;
    build(id << 1, l, t.mid);
    build(id << 1 | 1, t.mid + 1, r);
}
void update(int id, int l, int r, int color)
{
    Node &t = tree[id];
    //1
    if (l == t.l && r == t.r)
    {
        t.cover = true;
        t.color = COLOR[color];
        return;
    }
    //1
    // if (l <= t.l && r >= t.r)
    // {
    //     t.cover = true;
    //     t.color = COLOR[color];
    //     return;
    // }
    relax(id);
    // if (t.mid >= l)
    //     update(id << 1, l, r, color);
    // if (t.mid < r)
    //     update(id << 1 | 1, l, r, color);

    //2
    if (t.mid < l)
        update(id << 1 | 1, l, r, color);
    else if (t.mid >= r)
        update(id << 1, l, r, color);
    else
    {
        update(id << 1, l, t.mid, color);
        update(id << 1 | 1, t.mid + 1, r, color);
    }
    //2
    tree[id].color = tree[id << 1].color | tree[id << 1 | 1].color;
}
int query(int id, int l, int r)
{
    Node &t = tree[id];
    //1
    if (t.l == l && t.r == r)
        return t.color;
    //1
    // if (t.l >= l && t.r <= r)
    //  return t.color;

    relax(id);
    int sum1 = 0, sum2 = 0;
    // if (t.mid >= l)
    //     sum1=query(id << 1, l, r);
    // if (t.mid < r)
    //     sum2=query(id << 1 | 1, l, r);
    // 2
    if (t.mid < l)
        sum1 = query(id << 1 | 1, l, r);
    else if (t.mid >= r)
        sum2 = query(id << 1, l, r);
    else
    {
        sum1 = query(id << 1, l, t.mid);
        sum2 = query(id << 1 | 1, t.mid + 1, r);
    }
    //2
    return sum1 | sum2;
}
void update2(int id, int l, int r, int color)
{
    Node &t = tree[id];

    if (l <= t.l && t.r <= r)
    {
        t.cover = true;
        t.color = COLOR[color];
        return;
    }
    relax(id);
    if (t.mid >= l)
        update2(id << 1, l, r, color);
    if (t.mid < r)
        update2(id << 1 | 1, l, r, color);
    tree[id].color = tree[id << 1].color | tree[id << 1 | 1].color;
}
int query2(int id, int l, int r)
{
    Node &t = tree[id];
    if (l <= t.l && t.r <= r)
        return t.color;
    relax(id);
    int sum1 = 0, sum2 = 0;
    if (t.mid >= l)
        sum1 = query2(id << 1, l, r);
    if (t.mid < r)
        sum2 = query2(id << 1 | 1, l, r);
    return sum1 | sum2;
}
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int L, T, O;
    while (scanf("%d%d%d", &L, &T, &O) + 1)
    {
        char op[10];
        int a, b, c;
        build(1, 1, L);
        for (int i = 1; i <= O; i++)
        {
            scanf("%s", op);
            if (op[0] == 'C')
            {
                scanf("%d%d%d", &a, &b, &c);
                update2(1, a, b, c);
            }
            else
            {
                scanf("%d%d", &a, &b);
                if (a > b)
                    swap(a, b);
                printf("%d\n", getcolor(query2(1, a, b)));
            }
        }
    }

    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值