对于深度学习中数据加载及预处理,PyTorch提供了封装好的接口供用户快速调用,极大简化和加快数据处理流程,数据集主要保存在torchvison中。
数据集:CIFAR-10
目标:分类
数据集介绍:该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是3×32×323×32×32,也即3-通道彩色图片,分辨率为32×3232×32。
数据集下载,download改为True即可,自己下载放在路径也可以。
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化
# 第一次运行程序torchvision会自动下载CIFAR-10数据集,
# 定义对数据的预处理
transform = transforms.Compose([
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])

这篇博客介绍了如何使用PyTorch进行CIFAR-10图像数据集的分类任务。CIFAR-10包含60000张32x32彩色图片,分为10个类别。文章涵盖了数据集的下载、网络模型的定义、损失函数和优化器的选择,以及训练过程和准确率计算。经过4轮训练,网络的准确率达到了40%以上,显示了深度学习的有效性。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=106261700&d=1&t=3&u=38b94d912781414e85124903db661da5)
1万+

被折叠的 条评论
为什么被折叠?



