Pytorch-学习案例1(CIFAR-10图像数据集分类)

这篇博客介绍了如何使用PyTorch进行CIFAR-10图像数据集的分类任务。CIFAR-10包含60000张32x32彩色图片,分为10个类别。文章涵盖了数据集的下载、网络模型的定义、损失函数和优化器的选择,以及训练过程和准确率计算。经过4轮训练,网络的准确率达到了40%以上,显示了深度学习的有效性。
摘要由CSDN通过智能技术生成

对于深度学习中数据加载及预处理,PyTorch提供了封装好的接口供用户快速调用,极大简化和加快数据处理流程,数据集主要保存在torchvison中。

数据集:CIFAR-10

目标:分类

数据集介绍:该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是3×32×323×32×32,也即3-通道彩色图片,分辨率为32×3232×32。

数据集下载,download改为True即可,自己下载放在路径也可以。

import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化
# 第一次运行程序torchvision会自动下载CIFAR-10数据集,
# 定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
                             ])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值