PyTorch进阶学习
主要是PyTorch的一些进阶学习,记录日常出现的问题
樊花的花花
这个作者很懒,什么都没留下…
展开
-
Pytorch学习案例2 -线性回归(2)
上一篇博文用的是手动求导,更新权重和截距,本篇博文主要是借助Pytorch自动自动求导引擎。计算图(Computation Graph)是PyTorch的核心,其为高效自动求导算法——反向传播(Back Propogation)提供了理论支持。其中torch.autograd是一套自动求导引擎,它能够根据输入和前向传播过程自动构建计算图,并执行反向传播。#在创建tensor的时候指定requires_grad,三种方式#(1)a = t.randn(3,4, requires_grad=Tr原创 2020-05-29 15:16:30 · 185 阅读 · 0 评论 -
Pytorch学习案例2 -线性回归
Tensor,又名张量,从工程角度,他就是一个数组,且支持高效的科学计算。它可以是一个数(标量),一维数组(向量),二维数组(矩阵)和更高维的数组Tensor的接口有意设计成与Numpy类似,方便用户使用。特点:可以随意的在gpu/cpu上传输使用tensor.cuda(device_id) 或者 tensor.cpu()Tensor 的操作可分为两类:1.torch.function,比如torch.save2.tensor.function,比如 tensor.view1.创建t原创 2020-05-28 19:51:30 · 409 阅读 · 0 评论 -
Pytorch-学习案例1(CIFAR-10图像数据集分类)
对于深度学习中数据加载及预处理,PyTorch提供了封装好的接口供用户快速调用,极大简化和加快数据处理流程,数据集主要保存在torchvison中。数据集:CIFAR-10目标:分类数据集介绍:该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck原创 2020-05-21 19:04:29 · 1405 阅读 · 0 评论 -
PyTorch学习进阶1
Pytorch主要特点是能够无缝和python语言整合,方便深度学习模型的构建和调试,以及使用动态计算图模型,灵活地实现各种需要的功能。Pytorch 的高性能和易用性使它拥有很多学术界用户的用户。目前Pytorch场景应用包含:计算机视觉和自然语言处理的应用、推荐系统、语音识别语音合成、以及强化学习的应用。本专栏主要记录PyTorch学习路径。Tensor(张量)是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。#原创 2020-05-21 16:25:21 · 190 阅读 · 0 评论
分享