bzoj1835: [ZJOI2010]base 基站选址

20 篇文章 0 订阅

题目
题解

Solution

显然 f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个村子建了 j j j个基站且第 i i i个村子建了基站
f [ i ] [ j ] = c [ i ] + m i n f [ k ] [ j − 1 ] + c o s t ( k , i ) f[i][j]=c[i]+min{f[k][j-1]+cost(k,i)} f[i][j]=c[i]+minf[k][j1]+cost(k,i)
c o s t ( k , i ) cost(k,i) cost(k,i)表示 k k k有一个基站, j j j有一个基站, k . . i k..i k..i的补偿代价
关键就是快速计算这个东西了
线段树优化,就是用线段树区间 m i n min min l o g n logn logn获得转移来的状态中最小值吧
j j j这一维显然可以滚掉
想办法让线段树每个点表示了选这个点作为转移点时的代价
先把 f [ ] [ j − 1 ] f[][j-1] f[][j1]建树,然后处理 c o s t cost cost的问题
i − − > i + 1 i-->i+1 i>i+1时,发现左端点不变,右段点右移了,那么哪些刚好最远i位置可以覆盖到的点就可能要补偿了
所以对于点 x x x,通过二分计算 s t [ x ] st[x] st[x] e d [ x ] ed[x] ed[x] x x x最左和最右到哪,然后用链表记录 e d [ x ] ed[x] ed[x]为某个值的点有哪些,
对于 e d [ x ] = i ed[x]=i ed[x]=i的点线段树 [ 1 , s t [ x ] − 1 ] [1,st[x]-1] [1,st[x]1]区间加 w [ x ] w[x] w[x],因为 [ s t [ x ] , i ] [st[x],i] [st[x],i]内都可以覆盖到 i i i,所以不需要补偿
复杂度 O ( k n l o g n ) O(knlogn) O(knlogn),区间加 n n n次,区间 m i n min min也有 n n n
注意:
1. j = = 1 1.j==1 1.j==1的时候 O ( n ) O(n) O(n)特判就行了
2. n + + , k + + 后 d [ n ] = w [ n ] = I N F , c [ n ] = 0 2.n++,k++后 d[n]=w[n]=INF,c[n]=0 2.n++,k++d[n]=w[n]=INF,c[n]=0 f [ n ] f[n] f[n]就是最优解了

Code

#include<bits/stdc++.h>
using namespace std;
#define mid ((l+r)>>1)
const int N=20002;
struct node{
	int to,ne;
}e[N];
int mn[N<<2],lz[N<<2],h[N],st[N],ed[N],d[N],s[N],w[N],c[N],i,K,n,j,t,tot,f[N],k,ans;
inline char gc(){
	static char buf[100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd(){
	int x=0,fl=1;char ch=gc();
	for (;ch<48||ch>57;ch=gc())if(ch=='-')fl=-1;
	for (;48<=ch&&ch<=57;ch=gc())x=(x<<3)+(x<<1)+(ch^48);
	return x*fl;
}
void up(int t){mn[t]=min(mn[t<<1],mn[t<<1|1]);}
void down(int t){
	if (lz[t]){
		mn[t<<1]+=lz[t],mn[t<<1|1]+=lz[t];
		lz[t<<1]+=lz[t],lz[t<<1|1]+=lz[t];
		lz[t]=0;
	}
}
void build(int t,int l,int r){;
	lz[t]=0;
	if (l==r){
		mn[t]=f[l];
		return;
	}
	build(t<<1,l,mid),build(t<<1|1,mid+1,r);
	up(t);
}
int query(int t,int l,int r,int x,int y){
	if (x>y) return 0;
	if (x<=l && r<=y) return mn[t];
	down(t);
	int ans=2e9;
	if (x<=mid) ans=min(ans,query(t<<1,l,mid,x,y));
	if (mid<y) ans=min(ans,query(t<<1|1,mid+1,r,x,y));
	return ans;
}
void add(int t,int l,int r,int x,int y,int v){
	if (x>y) return;
	if (x<=l && r<=y){
		mn[t]+=v,lz[t]+=v;
		return;
	}
	down(t);
	if (x<=mid) add(t<<1,l,mid,x,y,v);
	if (mid<y) add(t<<1|1,mid+1,r,x,y,v);
	up(t);
}
int main(){
	n=rd(),K=rd();
	for (i=2;i<=n;i++) d[i]=rd();
	for (i=1;i<=n;i++) c[i]=rd();
	for (i=1;i<=n;i++) s[i]=rd();
	for (i=1;i<=n;i++) w[i]=rd();
	n++,K++;
	d[n]=w[n]=1e9+5;
	for (i=1;i<=n;i++){
		st[i]=lower_bound(d+1,d+n+1,d[i]-s[i])-d;
		ed[i]=lower_bound(d+1,d+n+1,d[i]+s[i])-d;
		if (d[ed[i]]-d[i]>s[i]) ed[i]--;//
		e[++tot]=(node){i,h[ed[i]]},h[ed[i]]=tot;
	}
	for (i=1;i<=n;i++){
		f[i]=t+c[i];
		for (k=h[i];k;k=e[k].ne) t+=w[e[k].to];
	}
	ans=2e9;
	for (j=2;j<=K;j++){
		build(1,1,n);
		for (i=1;i<=n;i++){
			f[i]=query(1,1,n,1,i-1)+c[i];
			for (k=h[i];k;k=e[k].ne) add(1,1,n,1,st[e[k].to]-1,w[e[k].to]);
		}
		ans=min(ans,f[n]);
	}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值