# 图像基础15 图像滤波与除噪——邻域平均法

### 概述

g(x,y)+1M(k.I)Sf(xk,yl)

S为邻域，不包括(x,y)$(x,y)$本身的像素点，核h(x,y)$h(x,y)$可为：

14010101010

18010101010

### 邻域平均法对椒盐噪声滤波进行处理的操作

# -*- coding: utf-8 -*-
# coding=utf-8
# 线性锐化滤波，拉普拉斯图像变换
import cv2
import numpy as np

fn = "test.jpg"

img = cv2.cvtColor(myimg , cv2.COLOR_BGR2GRAY)

# 加上椒盐噪声
param = 20
# 灰阶范围
w = img.shape[1]
h = img.shape[0]
newimg = np.array(img)

# 噪声点数量
noisecount = 100000
for k in range(0,noisecount):
xi = int(np.random.uniform(0,newimg.shape[1]))
xj = int(np.random.uniform(0,newimg.shape[0]))
newimg[xj,xi]=255

# 邻域平均法去噪
# 脉冲响应函数，核函数
# 图像四个边的像素处理
lbimg = np.zeros((h+2,w+2),np.float32)
tmpimg = np.zeros((h+2,w+2))
myh = h+2
myw = w+2
tmpimg[1:myh-1,1:myw-1] = newimg[0:myh, 0:myw]

# 用领域平均法的（设半径为2）脉冲响应函数
a = 1/8.0
kernel = a * np.array([[1,1,1],[1,0,1],[1,1,1]])
for y in range(1,myh-1):
for x in range(1,myw-1):
lbimg[y,x] = np.sum(kernel*tmpimg[y-1:y+2,x-1:x+2])
print(".")
resultimg = np.array(lbimg[1:myh-1,1:myw-1],np.uint8)
cv2.imshow('src',newimg)
cv2.imshow('dst',resultimg)
cv2.waitKey()
cv2.destroyAllWindows()


### 邻域平均法对高斯噪声滤波进行处理的操作

# -*- coding: utf-8 -*-
# coding=utf-8
# 线性锐化滤波，拉普拉斯图像变换
import cv2
import numpy as np

fn = "test.jpg"

img = cv2.cvtColor(myimg , cv2.COLOR_BGR2GRAY)

# 加上高斯噪声
param = 20
# 灰阶范围
grayscale = 256
w = img.shape[1]
h = img.shape[0]
newimg = np.zeros((h,w),np.uint8)

# 加上高斯噪声
param=20
# 灰阶范围
grayscale=256
w=img.shape[1]
h=img.shape[0]
newimg=np.zeros((h,w),np.uint8)

for x in range(0,h):
for y in range(0,w,2):
r1 = np.random.random_sample()
r2 = np.random.random_sample()
z1=param*np.cos(2*np.pi*r2)*np.sqrt((-2)*np.log(r1))
z2=param*np.sin(2*np.pi*r2)*np.sqrt((-2)*np.log(r1))

fxy=int(img[x,y]+z1)
fxy1 = int(img[x,y+1]+z2)
#f(x,y)
if fxy<0:
fxy_val=0
elif fxy>grayscale-1:
fxy_val=grayscale-1
else:
fxy_val=fxy
#f(x,y+1)
if fxy1<0:
fxy1_val=0
elif fxy1>grayscale-1:
fxy1_val=grayscale-1
else:
fxy1_val=fxy1
newimg[x,y]=fxy_val
newimg[x,y+1]=fxy1_val
print("-")

# 邻域平均法去噪
# 脉冲响应函数，核函数
# 图像四个边的像素处理
lbimg = np.zeros((h+2,w+2),np.float32)
tmpimg = np.zeros((h+2,w+2))
myh = h+2
myw = w+2
tmpimg[1:myh-1,1:myw-1] = newimg[0:myh, 0:myw]

# 用领域平均法的（设半径为2）脉冲响应函数
a = 1/8.0
kernel = a * np.array([[1,1,1],[1,0,1],[1,1,1]])
for y in range(1,myh-1):
for x in range(1,myw-1):
lbimg[y,x] = np.sum(kernel*tmpimg[y-1:y+2,x-1:x+2])
print(".")
resultimg = np.array(lbimg[1:myh-1,1:myw-1],np.uint8)
cv2.imshow('src',newimg)
cv2.imshow('dst',resultimg)
cv2.waitKey()
cv2.destroyAllWindows()