最大公约数、最小公倍数

使用辗转相除法可以快速的实现求最大公约数,而最小公倍数可以通过最大公约数求出。那么辗转相除法的原理是什么呢? 
辗转相除法,又名欧几里德算法,是已知最古老的算法,其可追溯至公元前300年前。设两数为a、b(a>b),用gcd(a,b)表示a,b的最大公约数,r=a(mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k…r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。 
证明如下: 
1.令c=gcd(a,b)=gcd(b,r),则设a=mc,b=nc,那么r= a-kb = (m-kn)c,由此可知,c也是r的因数; 
2.因为c是a与b的最大公约数,所以m与n互质,若要证明c也是b与r的最大公约数,那么n与(m-kn)也必须互质。 
3.用反证法证明n与(m-kn)互质。若n与(m-kn)存在最大公约数d,那么n = xd,(m-kn) = yd(d > 1),则m = yd+kn = (y+kx)d。从而可以推出m与n存在因数,并不互质,与条件相矛盾。所以n与(m-kn)互质。 
4.得到c=gcd(b,r),从而gcd(a,b)=gcd(b,r)。

**根据辗转相除法用Java实现最大公约数和最小公倍数:**
//最大公约数
public int max(int m, int n){
    if(m < n){   //保证m>n
        int temp = n;
        n = m;
        m = temp;
    }
    if(m%n == 0){
        return n;
    }
    return max(n,m%n);
}
//最小公倍数
public int min(int m, int n){
    return m*n/max(m,n);
}
--------------------- 
原文:https://blog.csdn.net/qq_26568205/article/details/82728591 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值