数论--中国剩余定理

中国剩余定理(Chinese Remainder Theorem: CRT):求解一次同余式组。
给出以下一元线性同余方程组:

(S):xa1(mod m1)xa2(mod m2)xa3(mod m3)

定理描述:方程组有解当且仅当 m1,m2,...,mn 两两互质,通解按如下方式构造:
M=i=1nmi , Mi=M/mi
ti=M1i Mi mi 的数论倒数(逆元): tiMi1(mod mi)
则解为:
x=i=1naitiMi

代码实现:

#include <iostream>
#include <algorithm>
using namespace std;

// ax + by = gcd(a, b) ==> d = gcd(a, b)
int exgcd(int a, int b, int& x, int& y)
{
    if(b == 0){ x = 1; y = 0; return a; }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

// ax = 1 (mod m) ==> x
int mod_reverse(int a, int m)
{
    int x, y;
    int d = exgcd(a, m, x, y);
    if(d == 1) return (x % m + m) % m;
    else return -1;
}

int CRTsolve(int a[], int m[], int n)
{
    int M = 1;
    int ans = 0;
    for(int i = 0; i < n; ++i) M *= m[i];
    for(int i = 0; i < n; ++i){
        int Mi = M / m[i], ti;
        ti = mod_reverse(Mi, m[i]);
        ans += ti * Mi * a[i];
    }
    return ans % M;
}

int main()
{
    int m[] = {3, 5, 7};
    int a[] = {2, 3, 2};

    cout << CRTsolve(a, m, sizeof(a) / sizeof(a[0]));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值