中国剩余定理(Chinese Remainder Theorem: CRT):求解一次同余式组。
给出以下一元线性同余方程组:
(S):⎧⎩⎨x≡a1(mod m1)x≡a2(mod m2)x≡a3(mod m3)
定理描述:方程组有解当且仅当 m1,m2,...,mn 两两互质,通解按如下方式构造:
设 M=∏i=1nmi , Mi=M/mi
设 ti=M−1i 为 Mi 模 mi 的数论倒数(逆元): tiMi≡1(mod mi)
则解为:
x=∑i=1naitiMi
代码实现:
#include <iostream>
#include <algorithm>
using namespace std;
// ax + by = gcd(a, b) ==> d = gcd(a, b)
int exgcd(int a, int b, int& x, int& y)
{
if(b == 0){ x = 1; y = 0; return a; }
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
// ax = 1 (mod m) ==> x
int mod_reverse(int a, int m)
{
int x, y;
int d = exgcd(a, m, x, y);
if(d == 1) return (x % m + m) % m;
else return -1;
}
int CRTsolve(int a[], int m[], int n)
{
int M = 1;
int ans = 0;
for(int i = 0; i < n; ++i) M *= m[i];
for(int i = 0; i < n; ++i){
int Mi = M / m[i], ti;
ti = mod_reverse(Mi, m[i]);
ans += ti * Mi * a[i];
}
return ans % M;
}
int main()
{
int m[] = {3, 5, 7};
int a[] = {2, 3, 2};
cout << CRTsolve(a, m, sizeof(a) / sizeof(a[0]));
return 0;
}
773

被折叠的 条评论
为什么被折叠?



