说明:
快速排序法(quick sort)是目前所公认最快的排序方法之一(视解题的对象而定),虽然快速排序法在最差状况下可以达O(n2),但是在多数的情况下,快速排序法的效率表现是相当不错的。
快速排序法的基本精神是在数列中找出适当的轴心,然后将数列一分为二,分别对左边与右边数列进行排序,而影响快速排序法效率的正是轴心的选择。
这边所介绍的第一个快速排序法版本,是在多数的教科书上所提及的版本,因为它最容易理解,也最符合轴心分割与左右进行排序的概念,适合对初学者进行讲解。
快速排序法的基本精神是在数列中找出适当的轴心,然后将数列一分为二,分别对左边与右边数列进行排序,而影响快速排序法效率的正是轴心的选择。
这边所介绍的第一个快速排序法版本,是在多数的教科书上所提及的版本,因为它最容易理解,也最符合轴心分割与左右进行排序的概念,适合对初学者进行讲解。
解法
这边所介绍的快速演算如下:
回圈处理:
透过以下演算法,则轴左边的值都会小于s,轴右边的值都会大于s,如此再对轴左右两边进行递回,就可以对完成排序的目的,例如下面的实例,*表示要交换的数,[]表示轴:
在上面的例子中,41左边的值都比它小,而右边的值都比它大,如此左右再进行递回至排序完成。
- 将最左边的数设定为轴,并记录其值为 s
回圈处理:
- 令索引 i 从数列左方往右方找,直到找到大于 s 的数
- 令索引 j 从数列右方往左方找,直到找到小于 s 的数
- 如果 i >= j,则离开回圈
- 如果 i < j,则交换索引i与j两处的值
- 将左侧的轴与 j 进行交换
- 对轴左边进行递回
- 对轴右边进行递回
透过以下演算法,则轴左边的值都会小于s,轴右边的值都会大于s,如此再对轴左右两边进行递回,就可以对完成排序的目的,例如下面的实例,*表示要交换的数,[]表示轴:
- [41] 24 76* 11 45 64 21 69 19 36*
- [41] 24 36 11 45* 64 21 69 19* 76
- [41] 24 36 11 19 64* 21* 69 45 76
- [41] 24 36 11 19 21 64 69 45 76
- 21 24 36 11 19 [41] 64 69 45 76
在上面的例子中,41左边的值都比它小,而右边的值都比它大,如此左右再进行递回至排序完成。
代码体现
public class QuickSort {
public static void sort(int[] number) {
sort(number, 0, number.length-1);
}
private static void sort(int[] number,
int left, int right) {
if(left < right) {
int s = number[left];
int i = left;
int j = right + 1;
while(true) {
// 向右找
while(i + 1 < number.length && number[++i] < s) ;
// 向左找
while(j -1 > -1 && number[--j] > s) ;
if(i >= j)
break;
swap(number, i, j);
}
number[left] = number[j];
number[j] = s;
sort(number, left, j-1); // 对左边进行递回
sort(number, j+1, right); // 对右边进行递回
}
}
private static void swap(int[] number, int i, int j) {
int t;
t = number[i];
number[i] = number[j];
number[j] = t;
}
}
Algorithm Gossip: 快速排序法(二)
说明
在快速排序法(一) 中,每次将最左边的元素设为轴,而之前曾经说过,快速排序法的加速在于轴的选择,在这个例子中,只将轴设定为中间的元素,依这个元素作基准进行比较,这可以增加快速排序法的效率。
解法
在这个例子中,取中间的元素s作比较,同样的先得右找比s大的索引 i,然后找比s小的索引 j,只要两边的索引还没有交会,就交换 i 与 j 的元素值,这次不用再进行轴的交换了,因为在寻找交换的过程中,轴位置的元素也会参与交换的动作,例如:
首先left为0,right为9,(left+right)/2 = 4(取整数的商),所以轴为索引4的位置,比较的元素是45,您往右找比45大的,往左找比45小的进行交换:
完成以上之后,再初别对左边括号与右边括号的部份进行递回,如此就可以完成排序的目的。
41 24 76 11 45 64 21 69 19 36
首先left为0,right为9,(left+right)/2 = 4(取整数的商),所以轴为索引4的位置,比较的元素是45,您往右找比45大的,往左找比45小的进行交换:
- 41 24 76* 11 [45] 64 21 69 19 *36
- 41 24 36 11 45* 64 21 69 19* 76
- 41 24 36 11 19 64* 21* 69 45 76
- [41 24 36 11 19 21] [64 69 45 76]
完成以上之后,再初别对左边括号与右边括号的部份进行递回,如此就可以完成排序的目的。
代码体现
public class QuickSort {
public static void sort(int[] number) {
sort(number, 0, number.length-1);
}
private static void sort(int[] number,
int left, int right) {
if(left < right) {
int s = number[(left+right)/2];
int i = left - 1;
int j = right + 1;
while(true) {
// 向右找
while(number[++i] < s) ;
// 向左找
while(number[--j] > s) ;
if(i >= j)
break;
swap(number, i, j);
}
sort(number, left, i-1); // 对左边进行递回
sort(number, j+1, right); // 对右边进行递回
}
}
private static void swap(int[] number, int i, int j) {
int t;
t = number[i];
number[i] = number[j];
number[j] = t;
}
}
说明
之前说过轴的选择是快速排序法的效率关键之一,在这边的快速排序法的轴选择方式更加快了快速排序法的效率,它是来自演算法名书 Introduction to Algorithms 之中。
解法
先说明这个快速排序法的概念,它以最右边的值s作比较的标准,将整个数列分为三个部份,一个是小于s的部份,一个是大于s的部份,一个是未处理的部份,如下所示 :
在排序的过程中,i 与 j 都会不断的往右进行比较与交换,最后数列会变为以下的状态:
然后将s的值置于中间,接下来就以相同的步骤会左右两边的数列进行排序的动作,如下所示:
整个演算的过程,直接摘录书中的虚拟码来作说明:
在排序的过程中,i 与 j 都会不断的往右进行比较与交换,最后数列会变为以下的状态:
然后将s的值置于中间,接下来就以相同的步骤会左右两边的数列进行排序的动作,如下所示:
整个演算的过程,直接摘录书中的虚拟码来作说明:
QUICKSORT(A, p, r)
if p < r
then q <- PARTITION(A, p, r)
QUICKSORT(A, p, q-1)
QUICKSORT(A, q+1, r)
end QUICKSORT
PARTITION(A, p, r)
x <- A[r]
i <- p-1
for j <- p to r-1
do if A[j] <= x
then i <- i+1
exchange A[i]<->A[j]
exchange A[i+1]<->A[r]
return i+1
end PARTITION
一个实际例子的演算如下所示:
代码体现
public class QuickSort {
public static void sort(int[] number) {
sort(number, 0, number.length-1);
}
private static void sort(int[] number,
int left, int right) {
if(left < right) {
int q = partition(number, left, right);
sort(number, left, q-1);
sort(number, q+1, right);
}
}
private static int partition(int number[],
int left, int right) {
int s = number[right];
int i = left - 1;
for(int j = left; j < right; j++) {
if(number[j] <= s) {
i++;
swap(number, i, j);
}
}
swap(number, i+1, right);
return i+1;
}
private static void swap(int[] number, int i, int j) {
int t;
t = number[i];
number[i] = number[j];
number[j] = t;
}
}