(xuyangcao说:)啊哈磊老师的这篇文章用一个小例子说明了之前三个算法之间的比较,生动形象,最重要的是给我们提供了一种思考问题解决问题的方法,即如何根据不同的具体情况选择不同的算法;正如很多人所说,单纯的比较不同算法之间的优越性是没有意义的,只有结合了具体情况的比较才有说服力。话不多说,直接上啊哈磊老师的大作:
再来看一个具体的例子《小哼买书》来看看三个排序在应用上的区别和局限性。 小哼的学校要建立一个图书角,老师派小哼去找一些同学做调查,看看同学们都喜欢读哪些书。小哼让每个同学写出一个自己最想读的书的ISBN号(你知道吗?每本书都有唯一的ISBN号,不信话你去找本书翻到背面看看)。当然有一些好书会有很多同学都喜欢,这样就会收集到很多重复的ISBN号。小哼需要去掉其中重复的ISBN号,即每个ISBN号只保留一个,也就说同样的书只买一本(学校真是够抠门的)。然后再把这些ISBN号从小到大排序,小哼将按照排序好的ISBN号去书店去买书。请你协助小哼完成“去重”与“排序”的工作。
输入有2行,第1行为一个正整数,表示有n个同学参与调查(n<=100)。第2行有n个用空格隔开的正整数,为每本图书的ISBN号(假设图书的ISBN号在1~1000之间)。
输出也是2行,第1行为一个正整数k,表示需要买多少本书。第2行为k个用空格隔开的正整数,为从小到大已排好序的需要购买的图书ISBN号。
例如输入
102040326740208930040015
则输出
8152032406789300400
先来看第一种方法。通过第一节的学习我们发现桶排序稍加改动正好可以起到去重的效果,因此我们可以使用桶排序的方法来解决此问题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
#include <stdio.h>
int
main()
{
int
a[1001],n,i,t;
for
(i=1;i<=1000;i++)
a[i]=0;
//初始化
scanf
(
"%d"
,&n);
//读入n
for
(i=1;i<=n;i++)
//循环读入n个图书的ISBN号
{
scanf
(
"%d"
,&t);
//把每一个ISBN号读到变量t中
a[t]=1;
//标记出现过的ISBN号
}
for
(i=1;i<=1000;i++)
//依次判断1~1000这个1000个桶
{
if
(a[i]==1)
//如果这个ISBN号出现过则打印出来
printf
(
"%d "
,i);
}
getchar
();
getchar
();
return
0;
}
|
接下来,要在输出的时候去掉重复的。因为我们已经排好序,因此相同的数都会紧挨在一起。只要在输出的时候,预先判断一下当前这个数a与前面一个数a[i-1]是否相同。如果相同则表示这个数之前已经输出过了,不同再次输出。不同则表示这个数是第一次出现需要,则需要输出这个数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
#include <stdio.h>
int
main()
{
int
a[101],n,i,j,t;
scanf
(
"%d"
,&n);
//读入n
for
(i=1;i<=n;i++)
//循环读入n个图书ISBN号
{
scanf
(
"%d"
,&a[i]);
}
//开始冒泡排序
for
(i=1;i<=n-1;i++)
{
for
(j=1;j<=n-i;j++)
{
if
(a[j]>a[j+1])
{ t=a[j]; a[j]=a[j+1]; a[j+1]=t; }
}
}
printf
(
"%d "
,a[1]);
//输出第1个数
for
(i=2;i<=n;i++)
//从2循环到n
{
if
( a[i] != a[i-1] )
//如果当前这个数是第一次出现则输出
printf
(
"%d "
,a[i]);
}
getchar
();
getchar
();
return
0;
}
|
我们来回顾一下本章三种排序算法的时间复杂度。桶排序是最快的,它的时间复杂度是O(N+M);冒泡排序是O(N2);快速排序是O(NlogN)。