原文出处:http://www.cricode.com/3208.html
在Quora上看到一个问题:工程实践当中,最常用的算法和数据结构有哪些?
以下是Google工程师Arjun Nayini给出的答案,得到了绝大多数人的赞同。
最常用的算法
1.图搜索算法(BFS,DFS)。
2.排序算法
3.通用的动态规划算法
4.匹配算法和网络流算法
5.正则表达式和字符串匹配算法
最常用的数据结构
1.图,尤其是树结构特别重要。
2.Maps结构
3.Heap结构
4.Stacks/Queues结构
5.Trie树
其他一些相对比较常用的数据算法还有:贪心算法、Prim’s / Kruskal’s算法、Dijkstra’s最短路径算法等等。
在学习了解这些数据结构和算法之前,引用一位前辈的话:
“我们不需要你在不参考任何资料,能够实现红黑树;我们需要的是你能在实践当中,选择恰当的数据结构完成程序开发;在必要的时候,能在已有的数据结构基础上进行适当改进,满足工程需要。但要做到这一点,你需要掌握基础的算法和数据结构,你需要理解并应用一些高级数据结构和算法的思想。因此,在程序员这条道路上,你要想走得更远,你需要活用各种数据结构,你需要吸收知名算法的一些思想,而不是死记硬背算法本身。”
关于这段话,这里举几个栗子。
1)什么叫做理解算法了思想?
这里是一篇很好的例子:说一说程序员“举一反三”的能力
2)怎么样才能活用各种数据结构?
你能很清楚的知道什么时候用hash表,什么时候用堆或者红黑色?在什么应用场景下,能用红黑色来代替hash表么?要做到这些,你需要理解红黑树、堆、hash表各有什么特性,彼此优缺点等,否则你不可能知道什么时候该用什么数据结构。
常言道:
程序 = 算法 + 数据结构
程序 ≈ 数据结构
If you want to become a good programmer, you can spend 10 years programming, or spend 2 years programming and learning algorithms.——大师说
因此,算法+数据结构的重要性就无需多讲了。