热门算法面试题第19天|Leetcode39. 组合总和40.组合总和II131.分割回文串

39. 组合总和

力扣题目链接(opens new window)

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

  • 输入:candidates = [2,3,6,7], target = 7,
  • 所求解集为: [ [7], [2,2,3] ]

示例 2:

  • 输入:candidates = [2,3,5], target = 8,
  • 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]

思路:

在我们之前做过的组合总和中,取法都是不能重复的,现在给出的数组元素可以重复

本题搜索的过程抽象成树形结构如下:

39.组合总和

 注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

确定递归函数及其参数

这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)

首先是题目中给出的参数,集合candidates, 和目标值target。

此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。

本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?

 如果是一个集合来求组合的话,就需要startIndex

如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex

代码如下:

// 存储所有符合条件的组合
    private List<List<Integer>> result = new ArrayList<>();
    // 当前路径(当前组合)
    private List<Integer> path = new ArrayList<>();
    
    // 回溯算法核心
    private void backtracking(int[] candidates, int target, int sum, int startIndex) {

递归终止条件:

 终止情况就两种,要么sum==target,要么sum>target

// 当前和超过目标值,直接返回
        if (sum > target) {
            return;
        }
        // 找到符合条件的组合
        if (sum == target) {
            result.add(new ArrayList<>(path)); // 注意创建新列表
            return;
        }

sum等于result直接add,大于return吊

确定单层递归逻辑

单层for循环依然是从startIndex开始,搜索candidates集合。

// 从startIndex开始遍历候选数字
        for (int i = startIndex; i < candidates.length; i++) {
            sum += candidates[i];              // 尝试选择当前数字
            path.add(candidates[i]);
            backtracking(candidates, target, sum, i); // 关键点:允许重复使用同一数字
            sum -= candidates[i];              // 撤销选择
            path.remove(path.size() - 1);      // 移除最后添加的数字
        }
    }

但与之前也有不同,我们在循环里面的递归的时候不用更新startindex

因为可以无限制重复选取

我们来看完整代码

import java.util.ArrayList;
import java.util.List;

class Solution {
    // 存储所有符合条件的组合
    private List<List<Integer>> result = new ArrayList<>();
    // 当前路径(当前组合)
    private List<Integer> path = new ArrayList<>();
    
    // 回溯算法核心
    private void backtracking(int[] candidates, int target, int sum, int startIndex) {
        // 当前和超过目标值,直接返回
        if (sum > target) {
            return;
        }
        // 找到符合条件的组合
        if (sum == target) {
            result.add(new ArrayList<>(path)); // 注意创建新列表
            return;
        }
        // 从startIndex开始遍历候选数字
        for (int i = startIndex; i < candidates.length; i++) {
            sum += candidates[i];              // 尝试选择当前数字
            path.add(candidates[i]);
            backtracking(candidates, target, sum, i); // 关键点:允许重复使用同一数字
            sum -= candidates[i];              // 撤销选择
            path.remove(path.size() - 1);      // 移除最后添加的数字
        }
    }
    
    // 主方法
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        result.clear();    // 清空结果集
        path.clear();      // 清空当前路径
        backtracking(candidates, target, 0, 0); // 从和为0,索引0开始回溯
        return result;
    }
}

剪枝优化

在这个树形结构中:

39.组合总和

以及上面的版本一的代码大家可以看到,对于sum已经大于target的情况,其实是依然进入了下一层递归,只是下一层递归结束判断的时候,会判断sum > target的话就返回。

其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。

那么可以在for循环的搜索范围上做做文章了。

对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历

如图:

39.组合总和1

最终代码

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
    private List<List<Integer>> result = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    
    private void backtracking(int[] candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.add(new ArrayList<>(path));
            return;
        }
        
        // 剪枝优化:sum + candidates[i] <= target
        for (int i = startIndex; i < candidates.length && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.add(candidates[i]);
            backtracking(candidates, target, sum, i); // 允许重复使用
            sum -= candidates[i];
            path.remove(path.size() - 1);
        }
    }
    
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        result.clear();
        path.clear();
        Arrays.sort(candidates); // 关键:排序后才能剪枝
        backtracking(candidates, target, 0, 0);
        return result;
    }
}

40.组合总和II

力扣题目链接(opens new window)

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,
  • 所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
  • 示例 2:
  • 输入: candidates = [2,5,2,1,2], target = 5,
  • 所求解集为:
[
  [1,2,2],
  [5]
]

 思路:

这道题目和39.组合总和 (opens new window)如下区别:
本题candidates 中的每个数字在每个组合中只能使用一次。
本题数组candidates的元素是有重复的,而39.组合总和 (opens new window)是无重复元素的数组candidates
最后本题和39.组合总和 (opens new window)要求一样,解集不能包含重复的组合。
本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合。

那么问题来了,我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

为了理解去重我们来举一个例子,candidates = [1, 1, 2], target = 3,(方便起见candidates已经排序了)

强调一下,树层去重的话,需要对数组排序!

选择过程树形结构如图所示:

确定递归函数及其参数

与上一题的套路相同,此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。

这个集合去重的重任就是used来完成的。

private List<List<Integer>> result = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    
    private void backtracking(int[] candidates, int target, int sum, int startIndex, boolean[] used) {

确定终止条件:

和上一题相同

if (sum > target) { // 这个条件其实可以省略
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

确定单层递归逻辑

for (int i = startIndex; i < candidates.length && sum + candidates[i] <= target; i++) {
            // 去重逻辑:当前元素和前一个相同,且前一个未被使用
            if (i > 0 && candidates[i] == candidates[i - 1] && !used[i - 1]) {
                continue;
            }
            
            sum += candidates[i];
            path.add(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // i+1 表示每个数字只能用一次
            used[i] = false;
            sum -= candidates[i];
            path.remove(path.size() - 1);
        }

前面我们提到:要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。

如果candidates[i] == candidates[i - 1] 并且 used[i - 1] == false,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]

不然会重复,比如第一个树枝的取1取我,和第二个树枝取1取2重复

此时for循环里就应该做continue的操作。

这块比较抽象,如图:

40.组合总和II1

我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:

  • used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
  • used[i - 1] == false,说明同一树层candidates[i - 1]使用过

为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。

而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示:

 剪枝优化总体和之前相同

我们来看完整的代码

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
    private List<List<Integer>> result = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    
    private void backtracking(int[] candidates, int target, int sum, int startIndex, boolean[] used) {
        if (sum == target) {
            result.add(new ArrayList<>(path));
            return;
        }
        
        for (int i = startIndex; i < candidates.length && sum + candidates[i] <= target; i++) {
            // 去重逻辑:当前元素和前一个相同,且前一个未被使用
            if (i > 0 && candidates[i] == candidates[i - 1] && !used[i - 1]) {
                continue;
            }
            
            sum += candidates[i];
            path.add(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // i+1 表示每个数字只能用一次
            used[i] = false;
            sum -= candidates[i];
            path.remove(path.size() - 1);
        }
    }
    
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        result.clear();
        path.clear();
        Arrays.sort(candidates); // 必须先排序
        boolean[] used = new boolean[candidates.length];
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
}

131.分割回文串

力扣题目链接(opens new window)

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

返回 s 所有可能的分割方案。

示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]

思路:

其实切割问题类似组合问题

例如对于字符串abcdef:

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个.....。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段.....。

感受出来了不?

所以切割问题,也可以抽象为一棵树形结构,如图:

131.分割回文串

递归用来纵向遍历,for循环用来横向遍历,切割线(就是图中的红线)切割到字符串的结尾位置,说明找到了一个切割方法。

此时可以发现,切割问题的回溯搜索的过程和组合问题的回溯搜索的过程是差不多的。

确定递归函数及其参数

全局变量数组path存放切割后回文的子串,二维数组result存放结果集。 (这两个参数可以放到函数参数里)

本题递归函数参数还需要startIndex,因为切割过的地方,不能重复切割,和组合问题也是保持一致的。

 private List<List<String>> result = new ArrayList<>();
    private List<String> path = new ArrayList<>();
    
    private void backtracking(String s, int startIndex) {

 确定递归终止条件

131.分割回文串

从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。

在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。

// 如果起始位置已经大于等于字符串长度,说明找到一组分割方案
        if (startIndex >= s.length()) {
            result.add(new ArrayList<>(path));
            return;
        }

确定单层递归逻辑

for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。

首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。

代码如下:

for (int i = startIndex; i < s.length(); i++) {
            // 如果是回文子串
            if (isPalindrome(s, startIndex, i)) {
                // 获取当前回文子串
                String str = s.substring(startIndex, i + 1);
                path.add(str);
                // 递归处理剩余部分
                backtracking(s, i + 1);
                // 回溯
                path.remove(path.size() - 1);
            }
            // 不是回文则跳过
        }

 判断回文子串

就是之前的双指针,从前后选两个指针,然后分别遍历就行

// 判断是否是回文串
    private boolean isPalindrome(String s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }

完整代码

import java.util.ArrayList;
import java.util.List;

class Solution {
    private List<List<String>> result = new ArrayList<>();
    private List<String> path = new ArrayList<>();
    
    private void backtracking(String s, int startIndex) {
        // 如果起始位置已经大于等于字符串长度,说明找到一组分割方案
        if (startIndex >= s.length()) {
            result.add(new ArrayList<>(path));
            return;
        }
        
        for (int i = startIndex; i < s.length(); i++) {
            // 如果是回文子串
            if (isPalindrome(s, startIndex, i)) {
                // 获取当前回文子串
                String str = s.substring(startIndex, i + 1);
                path.add(str);
                // 递归处理剩余部分
                backtracking(s, i + 1);
                // 回溯
                path.remove(path.size() - 1);
            }
            // 不是回文则跳过
        }
    }
    
    // 判断是否是回文串
    private boolean isPalindrome(String s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
    
    public List<List<String>> partition(String s) {
        result.clear();
        path.clear();
        backtracking(s, 0);
        return result;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值