一、是什么
- 官方解释:面向主题的、集成的、相对稳定、反应历史变化,用于企业的管理决策分析。
- 开发者角度:通过接入各种数据源,打破数据壁垒,根据业务方的需求,设计方便使用和准确的数据模型,高效将结果输出给业务方。
- 业务方角度:能快速准确提供数据,给公司的日常运营和领导决策提供数据支持和指导。
二、如何建立
1、分析业务需求、确认仓库主题
例:领导想看各部门GMV、毛利情况。运营团队要了解各个渠道的订单转化率,商品、品牌、品类、销售情况。用户团队关注用户相关的销售、商家团队关注商家的销售…
通过业务需求分析,需要做一个销售交易相关的主题
2、确定总线矩阵
维度:用户维度、商品维度、商家维度、订单渠道维度
业务过程:用户下单、支付成功、确认收货
3、设计分层架构
一般是业务接入层、明细层、汇总层、应用层
A、业务接入层:同步订单、用户、商家、商品、订单渠道相关的业务表到仓库中,不做任何清洗操作。
B、一致性维度:目标是尽量丰富维度属性,但是又不要过度运算,保证核心维度模型的整洁性,做好维度属性的整合和拆分。(商品表:对于产出快且使用率高的维度属性,比

数据仓库是企业决策分析的关键,涉及业务需求分析、总线矩阵确定、分层架构设计等步骤。通过建立销售交易主题,设计维度模型,并运用任务调度、数据质量管理和元数据工具,确保数据准确、高效。最后,使用BI和OLAP工具实现数据洞察。
最低0.47元/天 解锁文章
851

被折叠的 条评论
为什么被折叠?



