Hive Sql - Multi Distinct(多个distinct在同一个query中) 优化

本文探讨了在Hive SQL中遇到多个distinct操作导致的数据倾斜问题及其优化策略。建议使用spark-sql的approx_count_distinct函数进行基数估算,或者调整SQL语句结构,先进行数据去重,再对特定字段进行聚合和distinct操作,以提高查询效率。
摘要由CSDN通过智能技术生成
背景

当多个 distinct 操作同时出现在 select 中,数据会分发多次。容易造成Reduce数据倾斜

优化点
1、如果不要求精确值,可以使用 spark-sql approx_count_distinct函数 (基数计数 hyperloglog)
2、修改SQL

基础数据准备如下, 需要计算 不同渠道下的 不同周期 的访问uv

presto:bi> desc tmp.multi_distinct_test;
 Column  |  Type   | Extra | Comment  
---------+---------+-------+----------
 user_id | bigint  |       | 用户ID   
 channel | varchar |       | 渠道名称 
 day     | varchar |       | 访问日期 

presto:bi> select * from tmp.multi_distinct_test;
 user_id | channel |    day     
---------+---------+------------
       1 | A       | 2020-01-01 -- 和下一行 数据一模一样
       1 | A       | 2020-01-01 -- 👆
       1 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值