2020.3.6 总结
数据资产 是什么
在以下的基础上
- 数据标准(命名、模型、开发、流程规范)
- 数据治理(元数据、数据质量、血缘分析、生命周期、数据安全)
- 数据连通融合(全域标签、oneid)
以数据服务为分析价值的路口,给数据打上业务标签作为常见载体,
实现数据业务化,做到
资产分析:(资产地图:有哪些标签、缺哪些标签、精品标签)
资产治理:(数据治理:数据质量、生命周期、安全 不合理的地方)
资产应用:通过对数据服务、以及底层的ETL逻辑 实现血缘跟踪,保证重要资产的稳定可靠性,实现低成本高价值。
数据资产 应用场景
1、对数据打标签,让业务了解我们有什么数据,怎么使用这些数据。
2、落地实例举例:芝麻信用分、品牌数据银行、生意参谋
3、资产治理相关
4、数据服务的ROI
2020.3.1 总结
数据资产 是什么
我理解:能带来价值的数据。
例如 数据仓库 能带给 企业日常运营和决策的数据支持。
例如 芝麻信用分 能让其他公司也能够使用。
数据资产 怎么做
-
资产分析:通过对数据的业务属性 打上业务标签,生成资产地图,清晰方便了解哪些是核心数据&

本文总结了数据资产管理的要点,包括数据标准、治理、连通融合及服务。强调数据资产分析、治理和应用,如通过业务标签实现数据业务化,提供资产地图、治理数据质量和安全,确保资产的稳定性和ROI。并探讨了数据资产的应用场景,如数据标签、芝麻信用分案例,以及影响资产价值的因素,如数据质量、应用价值和风险。
最低0.47元/天 解锁文章
5940

被折叠的 条评论
为什么被折叠?



