Transformer中Input Vector到In-Context Vector的计算过程

摘要:

       输入向量投影成查询(Query)、键(Key)、值(Value)向量,这三个向量分别代表不同的方面,可以理解为输入向量的三个不同方面的属性。查询(Query)代表当前的目标元素,即模型在某一时刻关注或试图预测的元素;键(Key)代表序列中的每个元素,用于与查询进行匹配;代表序列中每个元素的内容或信息,用于生成最终的输出。

       通过上述这种设计,注意力机制允许模型在计算当前元素的表示时,动态地考虑序列中所有其他元素的影响,从而生成一个上下文感知的表示。这是一种创造性的表示方式,量化了不同元素对序列整体意义的数值影响,并在实际中被广泛验证有效。这种表示能够捕捉序列中的长距离依赖关系,并为模型提供丰富的信息,以更好地完成各种任务。

       在多头注意力中,每个头学习到的表示可能关注输入数据的不同方面,拼接这些表示可以生成一个包含丰富信息的最终表示。这种设计允许模型在不同的子空间中并行地捕捉信息,增加了模型的容量,并提高了其对数据的理解和处理能力。

1. 输入向量投影成Q、K、V向量的计算过程

为什么要投影:

  1. 捕获复杂关系:通过将输入向量投影到不同的表示空间,模型可以捕获输入数据中更复杂的关系和模式。

  2. 灵活性和泛化:不同的投影允许模型在不同的任务和数据类型中更好地泛化。

  3. 并行处理:多头注意力机制允许模型并行处理多个子空间的信息,提高了计算效率。

  4. 自适应学习:模型可以自适应地为不同的任务学习最优的特征表示。

  5. 端到端优化:整个注意力机制是可微分的,允许通过梯度下降算法进行端到端优化。

       将输入向量投影成查询(Query)、键(Key)、值(Value)向量的数学计算与实际计算结果和计算的实际意义之间的关系可以这样理解:

1.1 查询、键和值之间的关系:

  1. 查询(Query)

    • 代表当前的目标元素,即模型在某一时刻关注或试图预测的元素。
    • 在解码器中,查询通常代表目标序列中的下一个单词或标记。
    • 在编码器中,查询代表序列中的一个元素,用于与序列中的其他元素建立关系。
  2. 键(Key)

    • 代表序列中的每个元素,用于与查询进行匹配。
    • 通过计算查询和每个键的相似度,模型确定每个元素对当前查询的相关性。
  3. 值(Value)

    • 代表序列中每个元素的内容或信息,用于生成最终的输出。
    • 值向量通过与对应的注意力权重相乘,生成一个聚合的上下文表示。

1.2 代表的属性:

  1. 查询向量

    代表了当前处理的元素或目标元素的需求,即它需要从序列中获取的信息。
  2. 键向量

    代表了序列中每个元素的身份或特征,用于与查询向量进行匹配。
  3. 值向量

    代表了序列中每个元素的实际内容,它包含了用于更新当前元素表示的信息。

       通过这种设计,注意力机制允许模型在计算当前元素的表示时,动态地考虑序列中所有其他元素的影响,从而生成一个上下文感知的表示。这种表示能够捕捉序列中的长距离依赖关系,并为模型提供丰富的信息,以更好地完成各种任务。

1.3 数学计算:

1. **线性投影**:输入向量 \( \mathbf{x} \) 通过与权重矩阵 \( W^Q \)、\( W^K \)、\( W^V \) 相乘来进行线性投影,得到查询向量 \( Q \)、键向量 \( K \)、值向量 \( V \):
   \[ Q = \mathbf{x}W^Q, \quad K = \mathbf{x}W^K, \quad V = \mathbf{x}W^V \]

2. **注意力分数**:查询向量 \( Q \) 与每个键向量 \( K_i \) 计算点积,得到注意力分数,然后通常通过一个缩放因子(键向量维度的倒数)进行缩放,以减少计算中的方差。

3. **权重分布**:注意力分数通过 softmax 函数转换为权重分布 \( \mathbf{a} \),确保所有权重的和为1,这样就可以用作加权求和的权重。

4. **上下文向量**:权重分布 \( \mathbf{a} \) 与每个值向量 \( V_i \) 相乘并求和,得到上下文向量 \( \mathbf{c} \),它是输入向量在给定上下文中的表示。

1.4 实际计算结果:

实际计算结果是一个上下文向量 \( \mathbf{c} \),它是输入向量 \( \mathbf{x} \) 在序列中所有元素的加权表示。这个向量捕获了输入向量与序列中其他所有元素的关系,并且是通过模型学习到的权重矩阵 \( W^Q \)、\( W^K \)、\( W^V \) 来实现的。

1.5 计算的实际意义:

1. **上下文感知**:上下文向量 \( \mathbf{c} \) 为模型提供了一个包含序列上下文信息的表示,这对于理解序列中的元素和预测下一步动作非常重要。

2. **动态聚焦**:注意力机制使模型能够动态地聚焦于对当前任务最重要的信息,这在处理序列数据时尤其有用。

3. **长距离依赖**:通过考虑序列中所有元素的影响,模型能够捕捉长距离依赖关系,这对于语言模型和其他序列处理任务至关重要。

4. **自适应性**:模型通过学习权重矩阵 \( W^Q \)、\( W^K \)、\( W^V \) 自适应地调整对不同元素的关注程度。

5. **端到端学习**:注意力机制的所有步骤都是可微分的,允许模型通过端到端学习自动调整参数,以最大化任务的性能。

6. **泛化能力**:通过学习序列中元素之间的复杂关系,模型提高了其泛化能力,使其能够更好地推广到未见过的数据。

       总结来说,将输入向量投影成查询、键和值向量的数学计算不仅产生了一个上下文感知的表示,而且这个表示是通过模型自适应学习得到的,能够动态地聚焦于对当前任务最重要的信息。这种设计使得注意力机制在处理序列数据时非常强大和灵活。

2.上下文向量计算的数学表达式

上下文向量的数学计算可以通过以下步骤和公式表示:

1. **输入向量** \( \mathbf{x} \) 被分别投影到查询(Query)、键(Key)、值(Value)向量空间,得到 \( Q \)、\( K \)、\( V \):
   \[ Q = \mathbf{x}W^Q, \quad K = \mathbf{x}W^K, \quad V = \mathbf{x}W^V \]

2. **注意力分数** \( e_{ij} \) 是通过计算查询 \( Q \) 与每个键 \( K_j \) 的点积得到的,其中 \( i \) 是当前的序列位置,而 \( j \) 表示序列中的其他位置:
   \[ e_{ij} = Q K_j^T \]

3. **缩放点积注意力** 通过将点积除以一个缩放因子(通常是键向量维度的根号)来减少计算中的方差:
   \[ e_{ij} = \frac{Q K_j^T}{\sqrt{d_k}} \]

   其中 \( d_k \) 是键向量的维度。

4. **权重分布** \( a_{ij} \) 是通过 softmax 函数应用在注意力分数上得到的,确保了对每个位置 \( i \) 的注意力权重和为1:
   \[ a_{ij} = \frac{\exp(e_{ij})}{\sum_{k} \exp(e_{ik})} \]

5. **上下文向量** \( C_i \) 是通过将值 \( V_j \) 乘以对应的注意力权重 \( a_{ij} \) 并求和得到的:
   \[ C_i = \sum_{j} a_{ij} V_j \]

在多头注意力中,上述过程会被复制多次,每个头有其自己的权重矩阵 \( W^Q \)、\( W^K \)、\( W^V \)。每个头计算得到的上下文向量 \( C_i \) 会被拼接起来,并通过另一个线性层进行投影,以生成最终的输出向量。

这样,每个序列位置的上下文向量都包含了序列中所有其他位置的信息,其贡献度由注意力权重决定,从而使得模型能够捕捉序列中的上下文信息和长距离依赖关系。

3. 多头注意力机制中上下文向量的拼接计算数学表达式

在多头注意力机制中,上下文向量的拼接涉及以下步骤:

1. **多头计算**:
   对于每个“头” \( h \),模型独立地计算查询 \( Q_h \)、键 \( K_h \)、值 \( V_h \) 向量,然后计算每个头的上下文向量 \( C_{i,h} \):
   \[ Q_h = XW_h^Q, \quad K_h = XW_h^K, \quad V_h = XW_h^V \]
   \[ C_{i,h} = \sum_{j} \frac{\exp(\frac{Q_{h,i} K_{h,j}^T}{\sqrt{d_k}})}{\sum_{k} \exp(\frac{Q_{h,i} K_{h,k}^T}{\sqrt{d_k}})} V_{h,j} \]

   其中 \( X \) 是输入矩阵,\( W_h^Q \)、\( W_h^K \)、\( W_h^V \) 是第 \( h \) 个头的投影矩阵,\( d_k \) 是键向量的维度。

2. **拼接**:
   对于序列中的每个元素 \( i \),所有头的上下文向量 \( C_{i,h} \) 被拼接起来形成最终的上下文向量 \( C_i \):
   \[ C_i = [C_{i,1}, C_{i,2}, ..., C_{i,H}] \]

   其中 \( H \) 是注意力头的总数。

3. **线性投影**:
   拼接后的上下文向量 \( C_i \) 通过一个线性层 \( W^O \) 进行投影,以生成最终的输出向量 \( O_i \):
   \[ O_i = W^O C_i \]

   其中 \( W^O \) 是输出的线性投影矩阵。

4. **输出**:
   最终,模型输出的是经过线性投影的拼接向量 \( O_i \),它是序列中每个元素的上下文感知表示。

在多头注意力中,每个头学习到的表示可能关注输入数据的不同方面,拼接这些表示可以生成一个包含丰富信息的最终表示。这种设计允许模型在不同的子空间中并行地捕捉信息,增加了模型的容量,并提高了其对数据的理解和处理能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值