Java最小堆解决TopK问题

TopK问题是指从大量数据(源数据)中获取最大(或最小)的K个数据。

TopK问题是个很常见的问题:例如学校要从全校学生中找到成绩最高的500名学生,再例如某搜索引擎要统计每天的100条搜索次数最多的关键词。


对于这个问题,解决方法有很多:

方法一:对源数据中所有数据进行排序,取出前K个数据,就是TopK。

但是当数据量很大时,只需要k个最大的数,整体排序很耗时,效率不高。

方法二:维护一个K长度的数组a[],先读取源数据中的前K个放入数组,

对该数组进行升序排序,再依次读取源数据第K个以后的数据,和数组中最小的元素(a[0])比较,如果小于a[0]直接pass,大于的话,就丢弃最小的元素a[0],利用二分法找到其位置,然后该位置前的数组元素整体向前移位,直到源数据读取结束。

这比方法一效率会有很大的提高,但是当K的值较大的时候,长度为K的数据整体移位,也是非常耗时的。

对于这种问题,效率比较高的解决方法是使用最小堆

最小堆(小根堆)是一种数据结构,它首先是一颗完全二叉树,并且,它所有父节点的值小于或等于两个子节点的值。

最小堆的存储结构(物理结构)实际上是一个数组。如下图:

最小堆和数组之间的关系:父节点=a[i],左叶子=2(a[i] + 1) - 1,右叶子=2(a[i]+1)

堆有几个重要操作:

BuildHeap:将普通数组转换成堆,转换完成后,数组就符合堆的特性:所有父节点的值小于或等于两个子节点的值。

Heapify(int i):当元素i的左右子树都是小根堆时,通过Heapify让i元素下降到适当的位置,以符合堆的性质。

回到上面的取TopK问题上,用最小堆的解决方法就是:先去源数据中的K个元素放到一个长度为K的数组中去,再把数组转换成最小堆。再依次取源数据中的K个之后的数据和堆的根节点(数组的第一个元素)比较,根据最小堆的性质,根节点一定是堆中最小的元素,如果小于它,则直接pass,大于的话,就替换掉根元素,并对根元素进行Heapify,直到源数据遍历结束。

最小堆的实现:

public class MinHeap  
{  
    // 堆的存储结构 - 数组  
    private int[] data;  
      
    // 将一个数组传入构造方法,并转换成一个小根堆  
    public MinHeap(int[] data)  
    {  
        this.data = data;  
        buildHeap();  
    }  
      
    // 将数组转换成最小堆  
    private void buildHeap()  
    {  
        // 完全二叉树只有数组下标小于或等于 (data.length) / 2 - 1 的元素有孩子结点,遍历这些结点。  
        // *比如上面的图中,数组有10个元素, (data.length) / 2 - 1的值为4,a[4]有孩子结点,但a[5]没有*  
        for (int i = (data.length) / 2 - 1; i >= 0; i--)   
        {  
            // 对有孩子结点的元素heapify  
            heapify(i);  
        }  
    }  
      
    private void heapify(int i)  
    {  
        // 获取左右结点的数组下标  
        int l = left(i);    
        int r = right(i);  
          
        // 这是一个临时变量,表示 跟结点、左结点、右结点中最小的值的结点的下标  
        int smallest = i;  
          
        // 存在左结点,且左结点的值小于根结点的值  
        if (l < data.length && data[l] < data[i])    
            smallest = l;    
          
        // 存在右结点,且右结点的值小于以上比较的较小值  
        if (r < data.length && data[r] < data[smallest])    
            smallest = r;    
          
        // 左右结点的值都大于根节点,直接return,不做任何操作  
        if (i == smallest)    
            return;    
          
        // 交换根节点和左右结点中最小的那个值,把根节点的值替换下去  
        swap(i, smallest);  
          
        // 由于替换后左右子树会被影响,所以要对受影响的子树再进行heapify  
        heapify(smallest);  
    }  
      
    // 获取右结点的数组下标  
    private int right(int i)  
    {    
        return (i + 1) << 1;    
    }     
  
    // 获取左结点的数组下标  
    private int left(int i)   
    {    
        return ((i + 1) << 1) - 1;    
    }  
      
    // 交换元素位置  
    private void swap(int i, int j)   
    {    
        int tmp = data[i];    
        data[i] = data[j];    
        data[j] = tmp;    
    }  
      
    // 获取堆中的最小的元素,根元素  
    public int getRoot()  
    {  
            return data[0];  
    }  
  
    // 替换根元素,并重新heapify  
    public void setRoot(int root)  
    {  
        data[0] = root;  
        heapify(0);  
    }  
}  

利用最小堆获取TopK:

public class TopK  
{  
    public static void main(String[] args)  
    {  
        // 源数据  
        int[] data = {56,275,12,6,45,478,41,1236,456,12,546,45};  
          
// 获取Top5  
        int[] top5 = topK(data, 5);  
          
        for(int i=0;i<5;i++)  
        {  
            System.out.println(top5[i]);  
        }  
    }  
      
    // 从data数组中获取最大的k个数  
    private static int[] topK(int[] data,int k)  
    {  
        // 先取K个元素放入一个数组topk中  
        int[] topk = new int[k];   
        for(int i = 0;i< k;i++)  
        {  
            topk[i] = data[i];  
        }  
          
        // 转换成最小堆  
        MinHeap heap = new MinHeap(topk);  
          
        // 从k开始,遍历data  
        for(int i= k;i<data.length;i++)  
        {  
            int root = heap.getRoot();  
              
            // 当数据大于堆中最小的数(根节点)时,替换堆中的根节点,再转换成堆  
            if(data[i] > root)  
            {  
                heap.setRoot(data[i]);  
            }  
        }  
          
        return topk;  
}  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值