Redis分布式锁-Redisson源码解析

 

当我们在设计分布式锁的时候,我们应该考虑分布式锁至少要满足的一些条件,同时考虑如何高效的设计分布式锁

1、互斥

在分布式高并发的条件下,我们最需要保证,同一时刻只能有一个线程获得锁,这是最基本的一点。

2、防止死锁

在分布式高并发的条件下,比如有个线程获得锁的同时,还没有来得及去释放锁,就因为系统故障或者其它原因使它无法执行释放锁的命令,导致其它线程都无法获得锁,造成死锁。

所以分布式非常有必要设置锁的有效时间,确保系统出现故障后,在一定时间内能够主动去释放锁,避免造成死锁的情况。

3、性能

对于访问量大的共享资源,需要考虑减少锁等待的时间,避免导致大量线程阻塞。

所以在锁的设计时,需要考虑两点。

1、锁的颗粒度要尽量小。比如你要通过锁来减库存,那这个锁的名称你可以设置成是商品的ID,而不是任取名称。这样这个锁只对当前商品有效,锁的颗粒度小。

2、锁的范围尽量要小。比如只要锁2行代码就可以解决问题的,那就不要去锁10行代码了。

4、重入

我们知道ReentrantLock是可重入锁,那它的特点就是:同一个线程可以重复拿到同一个资源的锁。重入锁非常有利于资源的高效利用。关于这点之后会做演示。

针对以上Redisson都能很好的满足,下面就来分析下它。
Redisson

Redisson在基于NIO的Netty框架上,充分的利用了Redis键值数据库提供的一系列优势,在Java实用工具包中常用接口的基础上,为使用者提供了一系列具有分布式特性的常用工具类,支持 Redis 单实例、Redis 哨兵、Redis Cluster、Redis master-slave 等各种部署架构。Redisson使用Lua脚本方式将多个非原子命令封装在一起,一起发送给服务端,保证操作的原子性

redisson是目前redis分布式锁相对完美的实现,更多详情可以通过Redisson了解
Redisson简单使用

    RLock lock = redisson.getLock("lockName");
    try{
        //可以设置超时时间
        lock.lock();
        //业务逻辑
    } finally {
        lock.unlock();
    }

Redisson加解锁过程分析

详细流程图

通过一张图来看一看Redisson内部的锁操作流程,其内部实现主要用到3大技术栈(Lua脚本+Semaphore+异步线程),注:笔者使用的Redisson版本为3.12.1

加锁操作

线程去获取锁,获取成功: 执行lua脚本,保存数据到redis数据库。

线程去获取锁,获取失败: 一直通过while循环尝试获取锁,获取成功后,执行lua脚本,保存数据到redis数据库。

假设多个客户端同时竞争key为lockName上的锁资源

    客户端1
     
 

    RLock lock1 = redisson.getLock(“lockName”);
    lock1.lock();
    System.out.println("客户端1获锁成功!");
    lock1.lock();
    System.out.println("客户端1重复获锁成功!");
    lock1.unlock();
    lock1.unlock();
     
    客户端2
     
    RLock lock2 = redisson.getLock(“lockName”);
    lock2.lock();

加锁源代码

   

private void lock(long leaseTime, TimeUnit unit, boolean interruptibly) throws InterruptedException {
        // 线程ID
        long threadId = Thread.currentThread().getId();
        // 尝试获取锁
        Long ttl = this.tryAcquire(leaseTime, unit, threadId);
        // 如果过期时间等于null,则表示获取到锁,直接返回,不等于null继续往下执行
        if (ttl != null) {
            // 如果获取锁失败,则订阅到对应这个锁的channel
            RFuture<RedissonLockEntry> future = this.subscribe(threadId);
            if (interruptibly) {
                // 可中断订阅
                this.commandExecutor.syncSubscriptionInterrupted(future);
            } else {
                // 不可中断订阅
                this.commandExecutor.syncSubscription(future);
            }
            try {
                // 不断循环
                while(true) {
                    // 再次尝试获取锁
                    ttl = this.tryAcquire(leaseTime, unit, threadId);
                    // ttl(过期时间)为空,说明成功获取锁,返回
                    if (ttl == null) {
                        return;
                    }
                    // ttl(过期时间)大于0 则等待ttl时间后继续尝试获取
                    if (ttl >= 0L) {
                        try {
                            ((RedissonLockEntry)future.getNow()).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                        } catch (InterruptedException var13) {
                            if (interruptibly) {
                                throw var13;
                            }
                            ((RedissonLockEntry)future.getNow()).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                        }
                    } else if (interruptibly) {
                        ((RedissonLockEntry)future.getNow()).getLatch().acquire();
                    } else {
                        ((RedissonLockEntry)future.getNow()).getLatch().acquireUninterruptibly();
                    }
                }
            } finally {
                // 取消对channel的订阅
                this.unsubscribe(future, threadId);
            }
        }
    }

加锁lua脚本

解释一下Lua脚本中的几个参数

KEYS[1]加锁的key的名称,比如RLock lock = redisson.getLock(“lockName”);则KEYS[1]就是lockName

ARGV[1]表示锁的过期时间,如果未设置默认为30秒

ARGV[2]表示加锁的客户端ID,格式为:uuid + “:” + threadid,例如:
11bb52bc-a764-4649-8b46-a61513d7fe44:1

   

<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
        internalLockLeaseTime = unit.toMillis(leaseTime);
        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
                     //锁不存在,进行加锁操作,将锁资源保存在hash中
                  "if (redis.call('exists', KEYS[1]) == 0) then " +
                      "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  //锁存在且为同一线程重复加锁,将该线程的锁重入次数加1
                  "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                      "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  //其它客户端已经竞争到锁,返回当前锁的剩余过期时间
                  "return redis.call('pttl', KEYS[1]);",
                    Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
        }

获锁过程

分支一:锁不存在

使用"exists lockName"命令判断锁是否存在,不存在则使用"hset KEYS[1] ARGV[2] 1"命令进行加锁操作,假设客户端1加锁成功,使用hash数据结构存储客户端1的锁资源,结构为:

    "lockName":{
        //客户端ID:重入次数
        "11bb52bc-a764-4649-8b46-a61513d7fe44:1":1
    }

接着使用"pexpire KEYS[1] ARGV[1]",即"pexpire lockName 30000"设置lockName锁的过期时间,然后返回null表示加锁成功!

 

分支二:锁存在且为同一客户端重复加锁

客户端在同一线程操作中是可以重复获得锁的,使用命令"hincrby KEYS[1] ARGV[2] 1"将同一客户端的可重入次数加1,并重新设置过期时间,返回null表示加锁成功!

客户端1重复加锁成功,此时hash结构如下:

    "lockName":{
        //客户端ID:重入次数加了1
        "11bb52bc-a764-4649-8b46-a61513d7fe44:1":2
    }

 

分支三:客户端锁竞争

在客户端获锁失败后,当前客户端会订阅(subscribe)名称为"redisson_lock__channel: {lockName}"的channel,用于监听回调处理,客户端释放锁时会在redisson_lock__channel:{lockName}的channel上发布(publish)UNLOCK_MESSAGE的解锁消息

如果此时另一个客户端2也尝试在lockName上加锁,exists判断lockName已存在且hash中lockName键已经存在客户端1的锁"11bb52bc-a764-4649-8b46-a61513d7fe44:1",所以客户端2不能加锁了,怎么办?

客户端线程会使用"pttl KEYS[1]"命令返回当前锁的剩余过期时间ttl,然后使用J.U.C框架中的Semaphore根据返回的ttl时间调用LockSupport.parkNanos(ttl)来阻塞自己,在指定的等待时间结束后,则继续尝试加锁,不断循环,直到成功为止

RedissonLock类中的lock()方法代码片段如下:

   

 while (true) {
        //尝试加锁
        ttl = tryAcquire(leaseTime, unit, threadId);
        //获取成功
        if (ttl == null) {
            break;
        }
        
        if (ttl >= 0) {
            // 调用Semaphore的tryAcquire()方法
            future.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
        }
    }

Semaphore类中的tryACquire代码片段如下:

    //nanosTimeout时间为客户端需要等待的时间ttl
    LockSupport.parkNanos(this, nanosTimeout);

场景举例:A正在上厕所,B发现A已经在厕所了,于是B就问A什么时候可以出来,A说等10分钟就好了,这时B就使用手表开始计时等待(Semaphore),10分钟后发现A还在里面,于是B继续问A还要多久,A不好意思说再等我5分钟吧,B又开始计时等待。。。

 
可重入加锁机制

Redisson可以实现可重入加锁机制的原因,跟两点有关:

    1、Redis存储锁的数据类型是 Hash类型
    2、Hash数据类型的key值包含了当前线程信息。

下面是redis存储的数据

这里表面数据类型是Hash类型,Hash类型相当于我们java的 <key,<key1,value>> 类型,这里key是指 'redisson'

它的有效期还有9秒,我们再来看里们的key1值为078e44a3-5f95-4e24-b6aa-80684655a15a:45它的组成是:

guid + 当前线程的ID。后面的value是就和可重入加锁有关。

举图说明

上面这图的意思就是可重入锁的机制,它最大的优点就是相同线程不需要在等待锁,而是可以直接进行相应操作。

 
WatchDog延期机制

为什么要使用WatchDog?

Redisson提供的获锁api中有一个leaseTime选项,该值为-1时表明获锁成功的客户端可以一直持有该锁,释放锁之前,其他客户端线程将一直等待下去。我们知道当在Redis中设置一个key时,往往需要指定expireTime,防止其长期占用内存空间。在种场景下,锁最终还是会过期,所以在key过期之前,必须提供一种机制(WatchDog)来保证key继续有效

Redisson分布式锁中WatchDog实现机制

    可自定义设置过期时间,只有在没有设置过期时间(过期时间为默认值0)的情况下,才会启动自动延长。
    没有设置过期时间,直接申请锁时,会默认设置一个延长过期时间30s,定时每隔延长过期时间的三分之一时间10s,就重新设置过期时间30s(时期时间值为延长过期时间)。
    为了防止某次业务由于异常而出现任务持续很久,从而长时间占有了锁,添加最大延期次数参数限制,比如延期超过三次就不再延期。

客户端加锁(lock)成功后,会启用一个watch dog后台线程,使用netty时间轮HashedWheelTimer算法,每隔delay=10秒检查如果客户端还持有锁,则重新设置锁的过期时间为lockWatchdogTimeout=30秒(默认),其中delay = lockWatchdogTimeout/3

   

 private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, long threadId) {
        //当leaseTime为-1时启用watchdog
        if (leaseTime != -1) {
            return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
        }
        RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
        ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
            if (e != null) {
                return;
            }
            // 客户端获锁成功,延期操作
            if (ttlRemaining == null) {
                scheduleExpirationRenewal(threadId);
            }
        });
        return ttlRemainingFuture;
    }

对于同一客户端重复获锁且成功时,Redisson是怎么保证WatchDog的延期操作只执行一次?答案是:本地缓存

   

 private void scheduleExpirationRenewal(long threadId) {
        ExpirationEntry entry = new ExpirationEntry();
        ExpirationEntry oldEntry = EXPIRATION_RENEWAL_MAP.putIfAbsent(getEntryName(), entry);
        //第2次以后再获取锁,不用再使用时间轮算法延期了
        if (oldEntry != null) {
            oldEntry.addThreadId(threadId);
        } else {
            //第1次获取成功时,进行延期操作
            entry.addThreadId(threadId);
            renewExpiration();
        }
    }

RedissonLock类中的renewExpiration()方法代码片段如下:

   

//延期操作
    private void renewExpiration() {
        Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
            @Override
            public void run(Timeout timeout) throws Exception {
                //Lua脚本延期锁的过期时间
                RFuture<Boolean> future = renewExpirationAsync(threadId);
                future.onComplete((res, e) -> {
                    //延期成功
                    if (res) {
                        // 继续循环延期操作
                        renewExpiration();
                    }
                });
            }
        //每隔10秒检查一次
        }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    }

调用renewExpirationAsync()方法设置锁的过期时间,Lua脚本如下:

   

 protected RFuture<Boolean> renewExpirationAsync(long threadId) {
        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
                "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                    "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                    "return 1; " +
                "end; " +
                "return 0;",
            Collections.<Object>singletonList(getName()),
            internalLockLeaseTime, getLockName(threadId));
    }

哪些获锁方法会使用WatchDog?

大家应该注意,不是所有的获锁成功操作都会开启WatchDog功能,还需要leaseTime为-1的条件成立时,才会启用WatchDog。

注:leaseTime为-1则不会开启watchDao功能

 
释放锁操作

释放锁的操作相对简单,也比较容易理解,大概就四步:
删除key -> 设置过期时间 ->删除本地缓存 -> 发布解锁消息

解锁操作lua脚本

   

protected RFuture<Boolean> unlockInnerAsync(long threadId) {
        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
                //不存在就直接返回null
                "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
                    "return nil;" +
                "end; " +
                //将当前客户端的锁重入次数-1
                "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
                //如果当前客户端还持了锁,则重新设置过期时间
                "if (counter > 0) then " +
                    "redis.call('pexpire', KEYS[1], ARGV[2]); " +
                    "return 0; " +
                 //客户端已经释放了锁,删除key,发布解锁消息
                "else " +
                    "redis.call('del', KEYS[1]); " +
                    "redis.call('publish', KEYS[2], ARGV[1]); " +
                    "return 1; "+
                "end; " +
                "return nil;",
                Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.UNLOCK_MESSAGE, internalLockLeaseTime, getLockName(threadId));
        }

删除本地缓存代码

   

 void cancelExpirationRenewal(Long threadId) {
        ExpirationEntry task = EXPIRATION_RENEWAL_MAP.get(getEntryName());
        if (task == null) {
            return;
        }
        if (threadId != null) {
            task.removeThreadId(threadId);
        }
        if (threadId == null || task.hasNoThreads()) {
            Timeout timeout = task.getTimeout();
            if (timeout != null) {
                timeout.cancel();
            }
            EXPIRATION_RENEWAL_MAP.remove(getEntryName());
        }
    }

其中删除本地缓存map是在异步线程中执行的,WatchDog对客户端的锁进行缓期操作后,将该客户端线程信息保存在本地缓存map中,保证同一客户端重复获锁成功时,锁延期操作只执行一次

 
Redis分布式锁的缺点

Redis分布式锁会有个缺陷,就是在Redis哨兵模式下:

客户端1 对某个master节点写入了redisson锁,此时会异步复制给对应的 slave节点。但是这个过程中一旦发生 master节点宕机,主备切换,slave节点从变为了 master节点。

这时客户端2 来尝试加锁的时候,在新的master节点上也能加锁,此时就会导致多个客户端对同一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。

缺陷在哨兵模式或者主从模式下,如果 master实例宕机的时候,可能导致多个客户端同时完成加锁。

 
总结

至此,Redisson加解锁的详细过程分析完毕!回到开篇,我们说Redisson还有些小缺陷,比如在Mast-Slave架构下,主从同步通常是异步的

在这种场景(主从结构)中存在明显的竞态:
1、客户端A从master获取到锁
2、在master将锁同步到slave之前,master宕掉了
3、slave节点被晋级为master节点
4、客户端B取得了同一个资源被客户端A已经获取到的另外一个,锁安全失效!

官方给出的解决方案是使用Redlock算法,如果读者想进一步了解更多关于Redlock的内容,请参考官网Redis之RedLock算法

原文链接:https://blog.csdn.net/weixin_38004638/article/details/114569758

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值