01 北京邮电大学
“码上”平台——利用先进的大模型技术,为编程教育注入智能力量
该平台借助强大的大模型技术,为教师与学生构建了一个全新的智能化编程学习环境。它不仅使教师能更高效地传授编程知识,还让学生通过亲身实践和互动体验深入理解编程的精髓。
https://ezcoding.bupt.edu.cn/
02 浙江大学
“智海平台”——开启新一代科教平台的先河,精准赋能微课程教学
聚焦于微课程教学,智海平台致力于帮助教育者设计并实施更精确、高效的教学内容,进而显著提升学生的学习效率和动力。
https://momodel.cn/
03 华中师范大学
小雅平台——AI赋能教育创新,打造智能学习新场景
依托尖端的人工智能技术,小雅平台能够辅助教育工作者创造出既生动又引人入胜的学习场景,极大地提升了学生的参与度和学习体验。
https://ccnu.ai-augmented.com/
体验账号:ccnut202400003
密码:ccnut202400003+
04 西安电子科技大学
在西安电子科技大学,AI赋能的督导模式正成为提升教学质量的新引擎。这一模式通过智能化手段,帮助教育工作者更精准地监督和评估教学过程,从而实现教学方法和策略的持续优化。
https://xidianints.xidian.edu.cn/
体验账号:xdtest
密码:xidian@666
05 北京理工大学
知识图谱技术正驱动着智慧教学系统的建设与应用。该系统能够帮助教育者高效组织教学内容,同时为学生提供定制化的学习路径和资源,极大地丰富了教学方式和学习体验。
https://www.yanhekt.cn/show
06 华中科技大学
华中科技大学正在构建智能学业预警与协同帮扶机制,旨在通过先进的数据分析和智能技术预警学生的学习风险,并提供及时的协同帮扶,以助力每位学生健康成长。
华中科技大学近日推出的一项创新系统,旨在辅助教育工作者及时识别并解决学生的学业问题,进而有效提升学生的整体学业成绩。这个系统通过精准的数据分析和个性化的干预措施,为学生提供有针对性的帮助。详情可访问其官方网站了解。
https://bigdata.hust.edu.cn:1443/demo
体验账号:130265
密码:Rgzndemo@2024
07 华东师范大学
水杉在线平台,作为一个大规模的个性化全民数字素养提升项目,致力于为教育者提供定制化的教学体验。该平台能够满足不同背景学生的学习需求和兴趣,同时有效提升他们的数字素养水平。更多信息,请访问其官方网站。
https://www.shuishan.net.cn/
08 哈尔滨工业大学
在人工智能技术的帮助下,他们推出了一个针对电工电子实验教学的项目。该项目利用AI技术,为学习者提供了更为互动和个性化的学习方式,旨在提高教育工作者的教学效果以及学生的学习效率。具体详情,敬请访问其官网获取最新信息。
https://eelab.hit.edu.cn/2024/0407/c13879a341498/page.htm
这些举措无疑将极大地丰富教育工作者的教学资源库,同时也为学生们提供了更加高效、个性化的学习途径。随着科技的不断发展,我们有理由相信未来的教育将变得更加智能化和个性化,从而更好地满足学习者的多样化需求。
在教育领域,创新一直是推动学生成长和学术进步的关键因素。随着科技的快速发展,将现代技术融入课堂教学已成为教育工作者面临的重要课题。今天,我们将探讨如何通过利用新兴技术来提高教学效率和学生的学习体验。
数字化教育资源的开发和应用,为学生提供了更加多样化和个性化的学习选择。例如,在线课堂平台允许学生根据自己的进度和时间安排灵活学习,这不仅增强了学习的自主性,还提高了学习效率。此外,通过使用多媒体和虚拟现实技术,教师可以创建更加生动和互动的课程内容,这有助于激发学生的好奇心和探索欲。
数据分析技术的运用使得教育评估更加精准和科学。通过收集和分析学生的学习数据,教师能够更好地理解每个学生的学习状态和需求,从而提供更加针对性的指导和支持。这种方法不仅可以帮助学生及时调整学习策略,还能够促进教师教学方法的持续优化。
合作学习和远程教育的模式正在逐渐改变传统的教育景观。通过网络平台,学生可以轻松地与世界各地的同龄人交流和合作,这种跨文化的交流极大地拓宽了他们的视野并促进了全球意识的形成。同时,这也为教师提供了一个分享经验和教学资源的平台,有助于提升教学质量和效果。
科技的引入不仅没有削弱教育的本质,反而通过创新的方式增强了教育的质量和可达性。作为教育工作者,我们应该拥抱这些变革,利用科技工具来丰富教学内容和提高教学效果,最终实现培养出更多具有创新能力和国际视野的学生的目标。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。