一、背景
RAG(Retrieval-Augmented Generation),即检索增强生成,是一项由 Facebook AI Research(FAIR)团队于2020年提出的前沿人工智能技术。这项技术巧妙地融合了检索(Retrieval)与生成(Generation)两大环节,通过在海量数据中检索出相关信息,辅助语言模型产出更精确、更详尽的文本内容。
RAG技术之所以备受推崇,主要得益于以下几点优势:
-
外部知识库的利用:能够引入更广泛的知识源,提供深度且准确的回答。
-
知识更新的即时性:实现知识的动态更新,无需对模型进行重新训练。
-
生成回答的可解释性:答案直接引用了检索到的资料,增强了回答的透明度和可信度。
RAG技术的适用性极为广泛,包括问答系统、文档生成、智能助手、信息检索和知识图谱填充等自然语言处理任务,显著提升了大型语言模型在处理知识密集型任务时的性能。
RAG技术的优化途径多样,包括知识库处理、词向量模型、检索算法、重排算法以及推理生成等。本文将重点介绍基于知识库解析的细分优化工作。
二、解析方法
2.1 TXT文档解析
利用UnstructuredFileLoader
类加载TXT文件,并提取内容。
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./test/test_file1.txt")
docs = loader.load()
print(docs[0].page_content[:400])
2.2 Word文档解析
通过UnstructuredWordDocumentLoader
类来加载和解析Word文档。
from langchain.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
data = loader.load()
print(data)
2.3 PDF文档解析
解析PDF文档可以通过多种方式实现:
2.3.1 基于unstructured库
首先,需要安装OCR相关的函数库来解析PDF文档。
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./example_data/layout-parser-paper.pdf", mode="elements")
docs = loader.load()
print(docs[:5])
2.3.2 PyPDF工具
使用PyPDF库安装和按页码检索PDF文档。
`from langchain.document_loaders import PyPDFLoader` `loader = PyPDFLoader("example_data/layout-parser-paper.pdf")`
`pages = loader.load_and_split()`
2.3.3 在线读取工具
在线加载PDF文档的方法。
python from langchain.document_loaders` `import OnlinePDFLoader` `loader = OnlinePDFLoader("https://arxiv.org/pdf/2302.03803.pdf")` `data = loader.load()` `print(data)
2.3.4 PDFMiner
使用PDFMiner库来加载PDF文档。
python from langchain.document_loaders` `import PDFMinerLoader` `loader = PDFMinerLoader("example_data/layout-parser-paper.pdf")` `data = loader.load()
2.4 Email邮件解析
使用UnstructuredEmailLoader
类来加载和解析邮件数据。
from langchain.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader('example_data/fake-email.eml')
data = loader.load()
2.5 图片内容解析
处理JPG、PNG等图片格式,转换为RAG下游任务所需的文档数据格式。
from langchain.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
data = loader.load()
2.6 Markdown内容解析
Markdown文件的解析需要特别注意设置mode
和autodetect_encoding
参数。
loader = document_loaders.UnstructuredFileLoader(filepath, mode="elements", autodetect_encoding=True)
docs = loader.load()
2.7 PPT内容解析
加载和解析PPT文档。
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx")
data = loader.load()
2.8 DeepDoc解析
DeepDoc是RAGFlow框架中的一个组件,支持多种文本切片模板,以适应不同的业务场景。
- RAGFlow框架链接:RAGFlow on GitHub
通过这些方法,可以高效地将不同格式的文档内容解析为结构化数据,进而在RAG技术中发挥其作用,提升信息检索和文本生成的准确性和效率。
PDF 解析优化方法:
-
使用高效的库:
选择性能优异的库,例如PyMuPDF(也称为fitz)或PDFMiner,可以加快解析速度并提高解析质量。 -
并行处理:
利用多线程或多进程来并行解析PDF的不同部分,特别是在处理大型或多个PDF文件时。 -
优化OCR:
如果需要OCR技术来解析图像或扫描的PDF文档,选择高效的OCR引擎,如Tesseract,并对其进行参数调优。 -
选择合适的解析模式:
根据需求选择解析模式,例如文本提取、布局分析或元素级别的解析。 -
缓存机制:
对频繁访问的PDF文件内容实施缓存策略,避免重复解析。 -
资源限制:
在资源受限的环境中,优化内存和CPU的使用,例如通过调整解析库的配置。 -
错误处理:
增强错误处理能力,确保在解析损坏的PDF文件或遇到错误时不会影响整个处理流程。
Chunk 处理策略:
-
合理划分Chunk:
根据内容的逻辑结构合理划分chunks,例如按段落、按页面或按章节。 -
去除噪声:
清洗chunks中可能存在的噪声数据,如无关的页眉页脚、页码等。 -
内容重排:
对chunks进行必要的内容重排或格式化,以适应下游任务的需求。 -
特征提取:
从chunks中提取有用的特征,如关键词、实体、摘要等,以供进一步分析。 -
上下文保持:
在处理chunks时,保持文本的上下文信息,以便于更好地理解语义。 -
数据增强:
通过对chunks进行数据增强,如同义词替换、句子重组等,来提高模型的泛化能力。 -
索引构建:
为chunks构建索引,以便于快速检索和相似性搜索。 -
多模态融合:
如果PDF中包含图像或表格,将这些多模态数据与文本数据融合,以提供更丰富的信息。 -
质量评估:
对处理后的chunks进行质量评估,确保它们满足后续应用的要求。 -
安全性考虑:
在处理过程中注意数据的安全性和隐私性,避免敏感信息泄露。
通过上述方法和策略,可以有效地优化PDF的解析过程,并高效地处理解析后的数据,为各种应用场景提供支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。