普通的检测方法并不适合文字检测:
1.word/line bounding box 有比较大的aspect ratios
2.text 具有一个明确的方向
对于上述问题提出一个方法:segment and link
一个 segment 是一个覆盖一个word一部分的有方向的box(对于多个词组成的text line同样适用)
一个link 是连接一对segments,表明它们属于同一个word
这个方法的优点在于可以检测长的,有方向的text locally 。因为检测一个segment 并不需要一个word都被发现,同理link也是。
这个方法的检测策略类似于ssd,但是和ssd有很大的不同。ssd直接输出boundingbox的坐标,这个方法检测word或者text 的两部分(segment 和 link ),然后结合它们。
每一个boundingbox都是一个有方向的方框,
在一个feature map的一个像素点只有一个defaultbox,default box 的长宽是一个常量。
predictor 生成7个channel,2个是segment score(0,1),5个是bounding box offset。
link 有助于combine segments into whole words,也有助于分割两个相邻的words。分为within-

Seglink针对文字检测的挑战,如单词/行边界框的宽高比和明确的方向,提出了分段并链接的策略。这种方法通过检测局部的有方向段和连接段来识别长而定向的文本。它与SSD检测策略相似但不同,预测器生成的通道用于分段得分和边界框偏移。通过链接组合段形成完整单词,并使用图模型和DFS算法找到连接组件,从而实现文本检测。
最低0.47元/天 解锁文章
727

被折叠的 条评论
为什么被折叠?



