微博立场检测实战

本文介绍了进行微博立场检测的实战过程,从数据获取、数据处理、模型训练到准确率计算,最后为测试集打标签并准备提交结果。数据来源于比赛,包含训练集和测试集,其中训练集2400条,测试集600条,文本格式为微博内容,标签处理涉及映射和特征提取,训练中使用了StratifiedKFold进行交叉验证。
摘要由CSDN通过智能技术生成

数据

数据来源:一个比赛

数据格式如下图所示:五个target,三个stance,文本是微博

1.导入必要的库

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
import numpy as np

2.读取数据

直接read_csv会报错。其中训练数据2400条,测试数据600条,测试数据没有标签

train_data = pd.read_csv('data/train.csv',sep=None,engine='python',encoding='utf-8')
test_data = pd.read_csv('data/test.csv',sep=None,engine='python',encoding='utf-8')

3.数据预处理

1.标签映射为数字。这里建两个字典,一个是标签到数字的映射,一个是数据到标签的映射


                
当数据量达到TB或PB级的时候,传统关系型数据型已力不从心。在大数据热潮中,推出了NoSQL数据库,这种天生就为分布式存储而设计的技术,尤其以Apache HBase为代表,占领海量数据存储技术的大半壁江山。本教视从实战角度出来,向学员们手把手掌握HBase使用精髓,让学员达到如下目标: 1. 了解分布式存储的原理及架构。 2. 掌握如何使用HBase实现海量数据存储与检索。 3. 掌握HBase在开发中常见的技术大坑与调优技术。 课时1:HBase简介与部署 课时2:HBase架构与索引算法剖析 课时3:HBase建库建表与CRUD实战 课时4:基于HBase Client API的CRUD实战 课时5:批处理与扫描器实战 课时6:使用Ganglia监控HBase 课时7:过滤器实战之比较过滤器 课时8:过滤器实战之专用过滤器与FilterList 课时9:过滤器实战之自定义过滤器 课时10:Observer协处理器实战之Master级别原理剖析 课时11:Observer协处理器实战之Region级别原理剖析 课时12:Observer协处理器实战之表复制应用实战 课时13:Endpoint协处理器实战之原理剖析 课时14:Endpoint协处理器实战之数据统计应用实战 课时15:使用API管理HBase之核心理论 课时16:使用API管理HBase之编程实战 课时17:使用API管理HBase之编程实战(续) 课时18:搭建分布式HBase集群之Hadoop部署 课时19:搭建分布式HBase集群之HBase部署 课时20:sqoop2部署 课时21:使用sqoop2将mysql数据导入到HBase 课时22:集群管理之节点管理与数据任务 课时23:Rowkey设计与集群常见故障处理 课时24:集群调优经验分享 课时25:项目介绍与Solr环境搭建 课时26:数据层设计与中文分词器配置 课时27:Spring集成HBase之核心操作 课时28:Spring集成HBase之核心操作(续) 课时29:基于dom4j进行数据文件解析 课时30:数据层设计与实现之二级索引开发 课时31:数据层设计与实现之二级索引开发(续) 课时32:Spring集成Solrj之入门操作 课时33:Spring集成Solrj之高级操作 课时34:高亮查询功能开发之一 课时35:高亮查询功能开发之二 课时36:课程总结
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>