xxr233
码龄7年
关注
提问 私信
  • 博客:51,213
    51,213
    总访问量
  • 26
    原创
  • 2,095,025
    排名
  • 14
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2017-09-20
博客简介:

xxr233的博客

查看详细资料
个人成就
  • 获得29次点赞
  • 内容获得12次评论
  • 获得305次收藏
创作历程
  • 3篇
    2022年
  • 20篇
    2021年
  • 2篇
    2019年
  • 6篇
    2018年
成就勋章
TA的专栏
  • 论文阅读
    7篇
  • 知识储备
    4篇
  • 实战
    7篇
  • 神经的逻辑
    1篇
  • 这才是心理学
    3篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

无监督re-ranker,Improving Passage Retrieval with Zero-Shot Question Generation

re-ranking模型,使用无监督方法达到有监督的效果,改善open QA中的passage retrieval阶段
原创
发布博客 2022.09.10 ·
844 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】Dense Passage Retrieval for Open-Domain Question Answering

Dense Passage Retrieval for Open-Domain Question Answering
原创
发布博客 2022.07.20 ·
1564 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

论文阅读:Don’t Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification

任务:小样本文本分类创新点:已有的方法忽视了标签所蕴含的丰富语义在小样本学习中的作用,所以将标签名直接附在文本后输入BERT中,得到语义信息更加丰富的特征向量。support和query在加入标签信息后,其特征提取方法就不一样,因为query是没有标签的。所以,support和query分别采取了三种方法进行特征提取。最后使用prototypical network然后计算查询集和类别向量的欧几里得距离。再综合所有类别计算归属于某一个类别的概率。introduction在小样本学习领域,me
原创
发布博客 2022.04.12 ·
973 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【中文论文1】基于BERT-BIGRU的短文本多分类情感分析

BERT刚出来的时候发这篇论文还行,现在的话就毫无创新了。因为有了代码的经验,再看之前的那些论文似乎就觉得很容易了,今天这篇是很简单的一篇《基于 BERT-BiLSTM 的短文本情感分析 杨奎河,刘智鹏》,没有什么创新的,不过他在论文中写的内容倒是可以帮助我理解代码。仿照这篇,我也能写出一篇BERT-BIGRU的论文,还是多情感分类的。模型结构:文本向量化表示层:常用的 Word2vec是以词为处理单元的文本向量表示方法,过程繁琐,需经历文本预处理、特征提取、特征向量表示、 向量拼接,最后才能.
原创
发布博客 2021.04.09 ·
3776 阅读 ·
3 点赞 ·
0 评论 ·
49 收藏

方面级情感分析任务汇总

常规任务从SemEval-2014 Task 4 发布的对ABSA任务的评测来看,大致细分了4个子任务Aspect term extraction:提取句子中的情感实体或者说情感对象Aspect term polarity:在第一个任务基础上,对情感实体进行极性分类(正面、负面、中性等)举个例子:I hated their fajitas, but their salads were great → {fajitas: negative, salads: positive}fajitas,
原创
发布博客 2021.04.06 ·
1860 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

情感分析常见数据集以及任务进展

情感分析原文:https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.mdIMDbIMDb数据集是一个二分类的情感分析数据集,包括了来自Internet Movie Database(IMDb)的50000条电影评论,分别标注为正面和负面两类情感。数据集包含偶数个正面和负面评论。评论打分满分为10分,分数<=4归为负面评论,分数>=7归为正面评论。每部电影的评论不得超过30条
翻译
发布博客 2021.04.06 ·
8092 阅读 ·
6 点赞 ·
0 评论 ·
45 收藏

机器学习中的文本表示:特征提取时需要把测试数据一起提取了吗?

在使用机器学习做简单的文本分类时,突然有这个疑问。使用词袋模型也就是CountVectorizer进行词表示(也就是特征提取啦),我只提取了一部分训练数据的特征去训练,然后测试数据单独进行词表示后进行预测,发现这准确率很低很低啊如代码所示import pandas as pdfrom sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizerfrom sklearn.metrics import f1_scorefr
原创
发布博客 2021.04.02 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

3 FastText实现情感分析(pytorch)

在本节中,我们基于FastText算法实现一个模型论文,比之前的使用更少的参数,训练速度也明显加快准备数据FastText论文中的关键概念之一是它们计算输入句子的n-gram,并将它们附加到句子的末尾。这里我们使用bi-grams。For example, in the sentence “how are you ?”, the bi-grams are: “how are”, “are you” and “you ?”.generate_bigrams采用已经被分词的句子,计算bi-grams.
翻译
发布博客 2021.03.31 ·
832 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

2 升级版情感分析

在上一阶段使用基础的RNN模型完成了简单的情感分析,这一节将在上一节的基础作出以下优化:packed padded sequencespre-trained word embeddingsdifferent RNN architecturebidirectional RNNmulti-layer RNNregularizationa different optimizer使得准确率提升到84%准备数据就像之前一样,使用Fields获得数据的处理方式我们将使用packed pad.
翻译
发布博客 2021.03.31 ·
172 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

1 简单的情感分析

在本系列中将使用pytorch和torchtext构建模型来进行二分类情感分析,使用的数据集是IMDb(电影评论)introductionRNN网络普遍用在分析序列,一个句子用X={x1,...,xt}X = \{x_1,...,x_t\}X={x1​,...,xt​}表示,同一时刻,每一个词xtx_txt​输入模型中都会与上一个词产生的隐藏状态ht−1h_{t-1}ht−1​作用产生新的隐藏状态hth_tht​,如下公式:ht=RNN(xt,ht−1)h_t = RNN(x_t,h_{t-1}).
原创
发布博客 2021.03.30 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

电脑配置解惑

配一台台式机,除了显示器、键盘、鼠标外,最重要的主机大致包括以下配件:CPU:中央处理器,是电脑的运算核心及控制中心,cpu的好坏很大程度上决定了电脑的配置和性能 内存条:内部存储器,在开机时进行数据存储,关机后数据消失。体积小,速度快。 硬盘:外部存储器,他储存的数据断电后不会消失 显卡:通过计算,将数据转换为可以显示的数字或信号,传输到显示器上 主板:固定在机箱上,连接各个模块,从而实现功能 电源:将220V转为低直流电,为电脑主机提供电源 光驱,主要用于读取光盘,安装系统 其他输入输
原创
发布博客 2021.03.19 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

pytorch LSTM模型

BILSTM模型初始化1.torch.nn.Embeddingself.embedding = nn.Embedding(vocab_size,embedding_size,padding_idx=pad_idx)num_embeddings:嵌入字典的大小(词的个数); embedding_dim:每个嵌入向量的大小; padding_idx:若给定,则每遇到 padding_idx 时,位于 padding_idx 的嵌入向量(即 padding_idx 映射所对应的向量)为0;功能
原创
发布博客 2021.03.18 ·
571 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

BILSTM实现情感二分类

源码地址:https://gitee.com/xxr007/BILSTM-sentimentAnalysis.git数据探测得到了数据第一步应该做什么?当然是摸清这批数据的底,这个步骤也叫数据分析。对于用于做情感分析的文本数据,数据分析大概需要如下几步:数据总量多少条标签有几种,他们的比例是多少每一条的评论的长度是多少分词,去停用词后,每条评论的长度又是多少做一个词云图对于文本数据的分析用pandas这个库就够用了数据加载与封装模型初始化模型训练模型评估.
原创
发布博客 2021.03.23 ·
2477 阅读 ·
3 点赞 ·
0 评论 ·
29 收藏

pychram代码管理-码云

1.将本地的代码上传到码云上未被add的,是红色的commit是:绿色的push和被设置ignore的文件是:白色的在pychram上安装gitee插件 登录码云账号 创建仓库选择要上传的代码commit代码右键选择要上传的文件目录,选择git->commit文件较大,上传时间比较长这一步完成,在github上就可以看到代码文件了。第一次上传不需要pushpush代码 后续修改代码后需要先commit再push2.克隆码云的代码至Py
原创
发布博客 2021.03.17 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微博立场检测实战

数据数据来源:一个比赛数据格式如下图所示:五个target,三个stance,文本是微博1.导入必要的库import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.model_selection import StratifiedKFoldfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.me
原创
发布博客 2021.01.21 ·
1436 阅读 ·
0 点赞 ·
5 评论 ·
8 收藏

立场检测stance detection

stance detection,可理解为“立场检测”,stance即为人对个体、事物、事件所表现出的看法或者态度,如“支持、反对”。stance detection虽然也属于文本分类,但和基于主题的文本分类、情感分类有些差异,stance的表达是更隐晦的,因此分类难度更大。刚看到一篇关于立场检测的文章,一搜2019ACM上已经出了综述,故看看顺便记录一下。摘要:从自然语言文本中自动提取语义信息是一个重要的研究问题。随着在社交媒体网站、新闻门户网站和论坛等渠道人们可以自由方便地发表自己的言论,解决诸如情
原创
发布博客 2021.01.19 ·
8277 阅读 ·
9 点赞 ·
3 评论 ·
34 收藏

“Let’s Eat Grandma”:标点符号(句法树)增强语义表达,用于情感分析

标题:“Let’s Eat Grandma”: When Punctuation Matters in Sentence Representation for Sentiment Analysis作者:Mansooreh Karami*, Ahmadreza Mosallanezhad∗ , Michelle V Mancenido, Huan Liu 机构:Arizona State University, Tempe AZ, USA这个标题很点意思,我刚看到一脸懵“let's eat gra
原创
发布博客 2021.01.18 ·
1693 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

神经的逻辑:引言

作者介绍:埃利泽。斯滕伯格医学博士,神经科医生,具有医学和哲学双重学术背景这本书,光看目录就感觉到荒诞、神奇、有吸引力。每一个目录都是一个荒诞的问题,下面是我还没有看这本书之前对这些问题做的解答,哈哈哈,让我们开始吧!1.盲人做梦时会看见什么?天生的盲人是看不见这个世界的。我之前看到科普说盲人的世界并不是漆黑一片,就像失聪的人并不是一点声音都听不到一样,盲人看到的是马赛克后的世界?那么他们做的梦又是什么样子的,我很好奇。2.僵尸能开车去上班吗?3.想象能让你成为更好的运动员吗?就像我经常想象
原创
发布博客 2021.01.15 ·
227 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

这才是心理学:02可证伪性,如何打败头脑中的小精灵

科学必须是可证伪的!书中的一个例子:“我发现在大脑左半球的语言 区附近住着两个小精灵,它们有能力控制大脑许多区域中的电化学过 程。而且,长话短说,它们基本上控制了一切事情。但是,有一个问题 阻止我们看到它们,那就是小精灵有能力发现任何对大脑的侵入(外科 手术、X光等),一旦觉察到外界的探测,它们就会消失(我忘记说 了,它们具备隐身能力)。”看起来很荒诞对吧,但是你又不能找到某个切入点去证明这个理论是错的,也就是作者这个假设永远无法被证实是错的。所以这就不是科学,要讲一个研究成果认定为确定的科学事实
原创
发布博客 2021.01.15 ·
1156 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

这才是心理学:01心理学充满生机

这一章我之前已经看了一部分了,但是感觉写的有点晦涩,也没有啥例子,不够生动形象。我想从第二章看起吧,回头再看这一章。
原创
发布博客 2021.01.15 ·
110 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多