不同于 OpenAI 的闭源大模型,Google 和 Meta 等科技巨头正在通过开放模型来实现弯道超车。
2 月 21 日,Google 推出了一款轻量级的开放 AI 模型 —— Gemma(,它与 Meta 的 Llama 2 模型不相上下。
虽然名称上容易让人混淆,但 Google 在公告中解释称,Gemma 的灵感来源于 Gemini,拉丁语 Gemma,意为“宝石”。Gemma 相比 Gemini 更小、更轻,旨在让开发人员和研究人员更轻松地访问和使用,而 Gemini 则用于更复杂的任务。
Gemma 和 Gemini 均可免费使用,但 Gemma 的免费套餐更为有限。最令人兴奋的是,Gemma 模型可以在台式机或笔记本电脑上本地运行。
想要在终端设备上运行自己的大模型吗?快来尝试部署吧!
部署细节
准备工作
打开 HuggingFace 上 Google 公司的首页,可以看到其公开了多达 11 个 collections,而最先映入眼帘的就是咱们今天的主角 Gemma:

点击进入该 collection:

可以看到有 4 种不同类型的模型。我们这里选择参数最小的对话模型 gemma-2b-it 做示范。点击 google/gemma-2b-it 进入如下页面:

进到这里,你有两件事要做,首先是登录了 HuggingFace 了,其次是需要点击这里的按钮,同意他们的 license。同意后,在页面中的 Files and versions 这个 Tab 下面你就可以看到权重文件了:

此外,还需要访问“https://huggingface.co/settings/tokens”,创建并拷贝你的访问令牌,备用:

克隆模型权重文件
cd /llm # 假设你有这个路径的权限
mkdir 20240223-1415_Gemma
cd 20240223-1415_Gemma
git clone https://<你的huggingface账号>:<刚才复制的访问令牌>@huggingface.co/google/gemma-2b-it
顺利的话,当前路径下,你可以看到多了一个名为 gemma-2b-it 的文件夹,下面的文件有:

快速克隆
上面的教程是标准的下载流程,是要签署 license 的。下面还有国内魔塔社区提供的下载方式,在你的路径下直接运行如下代码克隆即可:
git clone https://www.modelscope.cn/AI-ModelScope/gemma-2b-it.git
尝试部署 Gemma
# 创建 conda 环境:
conda create -n test_gemma python=3.11 -y
conda activate test_gemma# 安装依赖:
pip install fschat, gradio, accelerate
# 尝试部署:
cd /work/20240117-2243_uranus_projects/20240118-0006_uranus_ichosengpt/test/20240223-1352_try_gemma
export MODEL_NAME='gemma-2b-it'
export MODEL_PATH=/llms/20240223-1415_Gemma/${MODEL_NAME}
export MODEL_NAMES="gemma-2b-it"
nohup python -m fastchat.serve.controller --host 0.0.0.0 --port 6097 >> 6097-running.log 2>&1 &
#tail -f 6097-running.log
nohup python -m fastchat.serve.model_worker --host 0.0.0.0 --port 6098 --worker-address http://192.168.1.149:6098 --controller-address http://192.168.1.149:6097 --model-path ${MODEL_PATH} --model-names ${MODEL_NAMES} >> 6098-running.log 2>&1 &
#tail -f 6098-running.log
nohup python -m fastchat.serve.gradio_web_server --host 0.0.0.0 --port 6099 --controller-url http://192.168.1.149:6097 >> 6099-running.log 2>&1 &
#tail -f 6099-running.log
# 尝试访问:http://<你的主机IP>:6099
部署总结
总结一下,整个尝鲜的完整代码如下:
# 创建文件夹,存放模型权重及其他文件
cd /llms
mkdir 20240223-1415_Gemma
cd 20240223-1415_Gemma
# 克隆模型权重
git clone https://www.modelscope.cn/AI-ModelScope/gemma-2b-it.git
# 创建 conda 环境
conda create -n test_gemma python=3.11 -y
conda activate test_gemma
# 安装依赖
pip install fschat, gradio, accelerate
# 启动服务
nohup python -m fastchat.serve.controller --host 0.0.0.0 --port 6097 >> 6097-running.log 2>&1 &
nohup python -m fastchat.serve.model_worker --host 0.0.0.0 --port 6098 --worker-address http://192.168.1.149:6098 --controller-address http://192.168.1.149:6097 --model-path /llms/20240223-1415_Gemma/gemma-2b-it >> 6098-running.log 2>&1 &
nohup python -m fastchat.serve.gradio_web_server --host 0.0.0.0 --port 6099 --controller-url http://192.168.1.149:6097 >> 6099-running.log 2>&1 &
尝鲜效果


…
嗯,“最强开源大模型”!
朋友们,你们也来试试吧。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

二、AI大模型视频教程

三、AI大模型各大学习书籍

四、AI大模型各大场景实战案例

五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。
483

被折叠的 条评论
为什么被折叠?



