ChatGPT火爆出圈后,市场上掀起一阵“大模型+行业”的讨论与热潮,工业领域也不例外。但当前大模型本身存在着不可解释性与幻觉等不足,这与工业领域“0容错”的特性相悖,大模型落地工业的进展似乎受阻。那么,当前大模型落地工业领域的现状如何?主要玩家有谁?产品形态是什么样的?应用场景有哪些?……诸多问题都将在报告中逐渐展开。
该报告综合考察了大模型技术的发展现状、市场竞争要素、行业应用的可行性与挑战,以及未来的发展趋势。报告指出,尽管大模型在工业领域的应用还处于早期阶段,但其潜力巨大,能够推动工业互联网平台的发展,并为工业企业提供新的增长动力。报告还强调了大模型与小模型的协同作用,以及大模型服务走向平台化的趋势。此外,报告通过专家访谈和案例分析,提供了行业内部的深刻见解和实践经验,为工业大模型行业的参与者提供了宝贵的参考和指导。

有需要完整报告的朋友,可以点击下方免费领取

报告亮点
- 行业初期阶段:报告指出,大模型在工业领域的应用还处于非常早期的阶段,供需双方都在探索,面临许多值得探讨的问题。
- 竞争要素分析:报告分析了大模型落地工业的三个主要竞争要素:基础能力、模型能力和模型应用,并强调这些要素在不同发展阶段的竞争优势会有所不同。
- 大小模型关系:报告提出大模型与小模型之间并非替代关系,而是共存并协同融合赋能的关系。
- 服务平台化趋势:报告预测大模型落地工业的服务将趋向平台化,形成以垂直行业大模型、智能体、小模型和机理模型为主的平台化调用方案。
- 数据资产价值:报告强调产业数据的拉通对工业大模型能力进化的重要性,以及对工业大模型落地的广度和深度的积极影响。
- 行业重合度高:报告指出工业大模型玩家与工业互联网平台玩家重合度高,且成长路径表现出高度相似的特征。
- 挑战与机遇并存:报告讨论了大模型在工业落地时面临的挑战,包括模型、数据、应用和商业变现等方面,同时也指出了合作大于竞争的行业趋势。
- 专家观点:报告包含了来自不同企业的专家对大模型在工业领域应用的实践经验分享和前瞻性思考,提供了行业内部的多元视角。
- 产业链及图谱分析:报告详细分析了2024年大模型落地工业领域的产业链和图谱,揭示了上游服务方、中游市场参与玩家和下游市场需求的特点。
- 盈利变现探讨:报告探讨了工业大模型企业的盈利变现方式,包括定制化综合解决方案、服务收费、软硬件一体产品销售等,并指出新的功能和场景开发可能带来新的变现模式。















有需要完整报告的朋友,可以点击下方免费领取


被折叠的 条评论
为什么被折叠?



