BERT-IMDB电影评论情感分类实战:SwanLab可视化训练 基于BERT模型的IMDB电影评论情感分类,是NLP经典的Hello World任务之一。这篇文章我将带大家使用SwanLab、transformers、datasets三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。观察了一下,中文互联网上似乎很少有能直接跑起来的BERT训练代码和教程,所以也希望这篇文章可以帮到大家。
2024年最网最火爆的大语言模型新书!这本LLM大模型黑书你一定要学(附PDF) 1.1 Transformer 的生态系统1.2 使用Transformer 优化NLP模型1.3 我们应该使用哪些资源1.4 本章小结1.5 练习题8.1 文本到文本模型8.2 使用T5 进行文本摘要8.3 使用GPT-3 进行文本摘要8.4 本章小结8.5 练习题。
重磅:2024大模型典型示范应用案例集,精选99个,纵览最新最全产业应用实践!(附PDF) 本文汇总了2024年大模型技术在不同行业中的应用案例,展示了大模型技术如何赋能行业创新和智能化转型。摘要大模型技术概述:介绍了大模型技术的概念及其在各行业中的应用潜力。行业赋能:案例集覆盖了医疗、金融、教育、政务等多个行业,展示了大模型技术如何助力行业提升效率和创新能力。智能应用:包括AI智能采编系统、智算操作系统、云端联动的大模型等,突出了大模型技术在智能应用中的实际效果。生态服务:探讨了大模型技术在构建行业生态、提供服务创新方面的应用。技术创新与应用。
GLM4指令微调入门实战(完整代码) 大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。
PyTorch LSTM谷歌股价预测(完整代码与训练过程) 基于LSTM模型的股票预测任务,是领域的经典任务之一。这篇文章我将带大家使用这四个开源工具,完成从Google股票数据集的准备、代码编写、可视化训练与预测的全过程。
程序员转行做什么好:数据分析师、AI大模型工程师、产品经理和云计算工程师? 因此,无论是从市场需求、技能匹配,还是从个人兴趣和职业规划的角度来看,云计算工程师都是一个值得考虑的职业选择。在探讨了产品经理、数据分析师和云计算工程师等多个职业方向后,我们不难发现,每个领域都有其各自的吸引力和发展潜力。然而,在AI技术飞速发展的今天,有一个领域尤为突出,那必然是AI大模型工程师。这个职业不仅站在了科技的最前沿,还拥有广阔的市场需求和令人期待的职业前景。
AI知识库复杂问题解决案例|破案了,此李四六非彼李四六 目的达到了,智能体通过夫妻关系矛盾点推断出,张三九的妻子李四六和患者李四六不是同一个人。当然,这个智能体也并非完美的解决方案,我们可以看到,整个处理过程,是为了解决复杂人物关系的识别而进行的适配和管理。其他的非人物关系的复杂问题,这个处理过程是存在缺陷的。其实,也没关系,在 Crew.ai 中,还支持在 Crew 团队中增加 Manager 的角色,先执行问题类型的判断,如果是属于复杂任务关系,就可以转交给这个人物关系识别实体识别与关系验证专家。若是其他的复杂问题,就转交给其他专家完成。
BERT实战-美团外卖评论情感分类实战:SwanLab可视化训练 基于Bert模型的美团外卖评论数据集的文本情感分类,是自然语言处理领域的经典案例之一。这篇文章我将带大家使用 SwanLab、Transformers、datasets 三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。我们需要安装以下这4个Python库:一键安装命令:他们的作用分别是:BERT模型我们直接下载来自HuggingFace上由Google发布的bert-case-chinese(中文版Bert)预训练模型。执行下面的代码,会自动下载模型权重并加载模型:3. 加载Meitua
AI大模型好书种草 - 《多模态大模型:技术原理和实战》(附送PDF电子版)| 大模型技术|LLM|多模态大模型 内容概述:引入多模态大模型的概念,探讨其技术挑战与解决方案。关键要点:多模态数据的表示、融合与对齐技术。内容概述:总结全书内容,提出对未来研究的建议与展望。这本大模型书籍PDF电子版我会免费分享出来,需要的小伙伴可以扫取。
大模型干货!带你了解7种检索增强生成 (RAG) 技术 回顾2023年RAG技术的发展,检索增强生成(Retrieval-Augmented Generation,RAG)技术彻底改变了人工智能模型的工作方式,它将生成式人工智能的优势与检索现实世界文档的精确性相结合。通过从外部来源提取相关数据,RAG使得人工智能能够生成更准确且上下文更合适的答案。随着这项技术的不断发展,RAG的多种变体应运而生,每种变体都在解决不同的挑战并提升人工智能的整体性能。在本文中,我们将深入探讨七种关键的RAG技术,重点介绍每种技术如何独特地提升AI生成内容的质量。
【大模型入门】从零开始训练大模型:详细梳理一个完整的 LLM 训练流程 在这篇文章中,我们将尽可能详细地梳理一个完整的 LLM 训练流程。包括模型预训练(Pretrain)、Tokenizer 训练、指令微调(Instruction Tuning)等环节。
人人能看懂:10分钟理解大模型基本原理 大模型,能够写一篇很长的内容:不过是“文字接龙”的小游戏。。(你也可以管这个叫:自回归)这里有一个简单的演示,可以点击 天气 来试试不过这里就有了一个新问题:AI 是如何判断哪个词可能性最大?又是如何理解我们写的内容呢?这项能力叫做 “注意力机制”:把注意力更多地放在重要的词语上。在下面的演示中,点击 阳光 花香 人们 微风 感叹 或者 今天 ,来看看大模型都关注到了什么。但问题又来了:AI 是怎样去辨别,哪些内容彼此更相似呢?
被大模型“折腾”不行了,奉劝不要轻易入行!!! 科技的进步,生产力就很容易提升,进而就是不需要过多的人。最近在尝试借助一些工具,提升做事的效率,初步试验感觉很不错。网络上所有的东西,确实都可以利用新平台重做一遍。现在火的东西越来越让人看不懂,一首挖呀挖火遍全网,看完后感触是什么?内容越简单越直白,其实更容易火,越是高深的东西,火的概率越小。你看有深度的电影,票房大概率不高,但爆米花电影就不一样。别给自己过多的心理负担,什么都要去尝试,说不定有些东西就突然火了。
通过 HuggingFace 调用 Llama3 在上一篇文章中,我们通过Meta官网下载了Llama模型,但由于官方提供的Demo需要显卡支持,且修改后仍未成功运行,最终选择通过HuggingFace下载模型。这篇文章将详细介绍如何使用HuggingFace平台下载和调用Llama模型,并提供代码示例用于测试。至此,我们成功演示了如何通过HuggingFace的Transformers调用Llama模型,并获取了模型的回答。
李开复周鸿祎力荐!NUS尤洋教授首发新书深入浅出热门AI大模型,大模型新手到专家的必备指南 大模型的复杂性和技术的不断更新,如何迅速理解不端更新迭代的大模型,准确地掌握这些技术,也成为不小的挑战。这些模型的学习和应用对于任何希望进入AI领域的人来说都是必不可少的,它们不仅为AI理论和实践提供了坚实的基础,而且还直接影响了AI技术的未来发展方向。从基础理论到最前沿的实践应用,全面覆盖了AI大模型领域,包括Transformer模型、BERT、ALBERT、T5、GPT系列、InstructGPT、RLHF、ChatGPT、GPT-4、Google的PaLM以及视觉模型等关键技术。
理解大模型训练中的PRM(过程奖励模型)训练 本文描述了ORM (Outcome Reward Model)的定义和作用。并基于OpenRLHF源码详细解读了ORM的训练过程。在RM的研发范式中,还有最近比较火热的PRM(Process Reward Model)。
转型AI产品经理的这一年多,我都收获了些什么?怎样转型AI产品经理? 不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。可能很多人都认为,AI产品经理有很高的技术门槛,最好是算法出身,最差也得懂技术是开发出身吧,但实际上不同的公司不同的业务项目,对AI产品经理的要求是有很大差异的。就我个人了解来讲,AI产品经理的方向主要有三类,而转型AI产品经理的路径主要有两种:按我个人理解,人工智
万字长文!手把手带你上手基于LangChain及Qwen大模型的开发与应用 在这们课程中,将会重点讲述以下部分的内容:1. Models(模型):课程将介绍多种模型的整合与应用,其中包括支持超过20种整合的LLMs(大语言模型)、聊天模型以及支持10余种整合的文本嵌入模型。这些模型为实现不同任务提供了基础支持,帮助学生深入理解模型的能力和适用场景。2. Prompts(提示):重点学习提示的设计和优化,包括提示模板的创建和使用。课程还将涵盖输出解析器的实现(超过5种),并特别介绍如何通过重试和逻辑修复来改进解析。此外,还会探索示例选择器的多种实现,帮助学员掌握提示与任务对接的技巧。
太绝了!字节内疯传的380页《从零开始大模型开发与微调基于PyTorch与ChatGLM》大模型必备书籍! 大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。## 目录。
独家 | 开始使用LangChain:帮助你构建LLM驱动应用的新手教程 自从ChatGPT发布以来,大型语言模型 (LLMs) 已经获得了很大的普及。尽管你可能没有足够的资金和计算资源在你的地下室从头开始训练一个LLM,但你仍然可以使用预先训练的LLMs来构建一些很酷的东西,例如:凭借其怪异的api和快速的工程设计,LLMs正在改变我们构建人工智能产品的方式。这就是为什么新的开发工具在 “LLMOpS” 一词下随处可见,其中一个新工具是LangChain(https://github.com/hwchase17/langchain)。什么是LangChain?LangChain