Hashmap数据结构
哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。
比如上图中,一共有16个桶0-15,当哈希值是03时,就会被放到3桶中,如果是19,对16(桶的大小)取模之后也是3,所以也会被放到3桶中。由于3桶有多个数据,就会形成一个链表。
这里需要注意的是,如果链表大小超过阈值(TREEIFY_THRESHOLD, 8),图中的链表就会被改造为树形结构。如果链表长度超过阈值( TREEIFY THRESHOLD==8),就把链表转成红黑树,链表长度低于6,就把红黑树转回链表。
Hashmap源码-初始化
//这是用于序列化的版本号。当一个类实现了 Serializable 接口,在进行序列化和反序列化操作时,serialVersionUID 能确保序列化和反序列化的类版本一致。若版本号不匹配,反序列化会抛出 InvalidClassException 异常。
private static final long serialVersionUID = 362498820763181265L;
//HashMap 默认的初始容量。容量指的是哈希表中桶(bucket)的数量,初始容量是创建 HashMap 时桶的初始数量。该值必须是 2 的幂次方,这里 1 << 4 即 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//HashMap 所能达到的最大容量。如果在构造函数里显式指定的容量超出这个值,那么就会使用该最大容量。此值同样必须是 2 的幂次方,并且不能超过 1 << 30
static final int MAXIMUM_CAPACITY = 1 << 30;
//ashMap 默认的负载因子。负载因子用于衡量在 HashMap 进行扩容操作前,其填满程度的指标。当 HashMap 中键值对的数量超过 容量 * 负载因子 时,HashMap 就会进行扩容操作,以维持较好的性能。默认负载因子 0.75 是在时间和空间成本之间权衡后的结果。
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//当某个桶中的节点数量达到该阈值时,这个桶就会从链表转换为红黑树。红黑树是一种自平衡的二叉搜索树,在处理大量冲突的键时,其查找、插入和删除操作的时间复杂度为 O (log n),比链表的 O (n) 更高效。该值必须大于 2,并且至少为 8,这样能和树在缩小时转换回链表的逻辑相契合。
static final int TREEIFY_THRESHOLD = 8;
//在 HashMap 进行扩容操作时,若某个桶中的节点数量减少到该阈值以下,这个桶就会从红黑树转换回链表。此值要小于 TREEIFY_THRESHOLD,并且最大为 6,以便和删除操作时的缩检测逻辑相契合。
static final int UNTREEIFY_THRESHOLD = 6;
//进行树化操作(将链表转换为红黑树)时,HashMap 所需的最小容量。若 HashMap 的容量小于该值,即使某个桶中的节点数量达到了 TREEIFY_THRESHOLD,也不会进行树化操作,而是会先对 HashMap 进行扩容。该值至少应为 4 * TREEIFY_THRESHOLD,这样能避免扩容和树化阈值之间产生冲突。
static final int MIN_TREEIFY_CAPACITY = 64;
Hashmap的构造方法
//默认的构造函数
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//指定容量大小
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//指定容量大小和负载因子大小
public HashMap(int initialCapacity, float loadFactor) {
//指定的容量大小不可以小于0,否则将抛出IllegalArgumentException异常
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//判定指定的容量大小是否大于HashMap的容量极限
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//指定的负载因子不可以小于0或为Null,若判定成立则抛出IllegalArgumentException异常
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
//tableSizeFor用于查找到大于给定数值的最近2次幂值,比如给定18就是32。给定33就是64。
this.threshold = tableSizeFor(initialCapacity);
}
//传入一个Map集合,将Map集合中元素Map.Entry全部添加进HashMap实例中
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
//此构造方法主要实现了Map.putAll()
putMapEntries(m, false);
}
hashmap的put方法中是直接使用的putVal方法进行直接放入的
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
那putVal是如何进行实现放入这个操作呢
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//HashMap.put的具体实现
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判定table不为空并且table长度不可为0,否则将从resize函数中获取
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//这样写法有点绕,其实这里就是通过索引获取table数组中的一个元素看是否为Null
if ((p = tab[i = (n - 1) & hash]) == null)
//若判断成立,则New一个Node出来赋给table中指定索引下的这个元素
tab[i] = newNode(hash, key, value, null);
else { //若判断不成立
Node<K,V> e; K k;
//对这个元素进行Hash和key值匹配
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) //如果数组中德这个元素P是TreeNode类型
//判定成功则在红黑树中查找符合的条件的节点并返回此节点
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else { //若以上条件均判断失败,则执行以下代码
//向Node单向链表中添加数据
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//若节点数大于等于8
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//转换为红黑树
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; //p记录下一个节点
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold) //判断是否需要扩容
resize();
afterNodeInsertion(evict);
return null;
}
整体而言就是
- 首先获取Node数组table对象和长度,若table为null或长度为0,则调用resize()扩容方法获取table最新对象,并通过此对象获取长度大小
- 判定数组中指定索引下的节点是否为Null,若为Null 则new出一个单向链表赋给table中索引下的这个节点
- 若判定不为Null,我们的判断再做分支
- 首先对hash和key进行匹配,若判定成功直接赋予e
- 若匹配判定失败,则进行类型匹配是否为TreeNode 若判定成功则在红黑树中查找符合条件的节点并将其回传赋给e
- 若以上判定全部失败则进行最后操作,向单向链表中添加数据若单向链表的长度大于等于8,则将其转为红黑树保存,记录下一个节点,对e进行判定若成功则返回旧值
- 最后判定数组大小需不需要扩容
Hashmap源码-hash方法
具体键值对在哈希表中的位置(数组 index)取决于下面的位运算:
i = (n - 1) & hash
仔细观察哈希值的源头,我们会发现,它并不是 key 本身的 hashCode,而是来自于 HashMap 内部的另外一个 hash 方法。注意,为什么这里需要将高位数据移位到低位进行异或运算呢?这是因为有些数据计算出的哈希值差异主要在高位,而 HashMap 里的哈希寻址是忽略容量以上的高位的,那么这种处理就可以有效避免类似情况下的哈希碰撞。
Hashmap源码-resize方法
//重新设置table大小/扩容 并返回扩容的Node数组即HashMap的最新数据
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //table赋予oldTab作为扩充前的table数据
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//判定数组是否已达到极限大小,若判定成功将不再扩容,直接将老表返回
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//若新表大小(oldCap*2)小于数组极限大小 并且 老表大于等于数组初始化大小
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//旧数组大小oldThr 经二进制运算向左位移1个位置 即 oldThr*2当作新数组的大小
newThr = oldThr << 1; // double threshold
}
//若老表中下次扩容大小oldThr大于0
else if (oldThr > 0)
newCap = oldThr; //将oldThr赋予控制新表大小的newCap
else { //若其他情况则将获取初始默认大小
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//若新表的下表下一次扩容大小为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor; //通过新表大小*负载因子获取
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; //下次扩容的大小
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; //将当前表赋予table
if (oldTab != null) { //若oldTab中有值需要通过循环将oldTab中的值保存到新表中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {//获取老表中第j个元素 赋予e
oldTab[j] = null; //并将老表中的元素数据置Null
if (e.next == null) //若此判定成立 则代表e的下面没有节点了
newTab[e.hash & (newCap - 1)] = e; //将e直接存于新表的指定位置
else if (e instanceof TreeNode) //若e是TreeNode类型
//分割树,将新表和旧表分割成两个树,并判断索引处节点的长度是否需要转换成红黑树放入新表存储
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null; //存储与旧索引的相同的节点
Node<K,V> hiHead = null, hiTail = null; //存储与新索引相同的节点
Node<K,V> next;
//通过Do循环 获取新旧索引的节点
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//通过判定将旧数据和新数据存储到新表指定的位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
//返回新表
return newTab;
}
- 判定数组是否已达到极限大小,若判定成功将不再扩容,直接将老表返回
- 若新表大小(oldCap2)小于数组极限大小&老表大于等于数组初始化大小 判定成功则 旧数组大小oldThr 经二进制运算向左位移1个位置 即 oldThr2当作新数组的大小
-
若[2]的判定不成功,则继续判定 oldThr (代表 老表的下一次扩容量)大于0,若判定成功 则将oldThr赋给newCap作为新表的容量
-
若 [2] 和[2.1]判定都失败,则走默认赋值 代表 表为初次创建
-
-
确定下一次表的扩容量, 将新表赋予当前表
-
通过for循环将老表中德值存入扩容后的新表中
-
获取旧表中指定索引下的Node对象 赋予e 并将旧表中的索引位置数据置空
-
若e的下面没有其他节点则将e直接赋到新表中的索引位置
若e的类型为TreeNode红黑树类型-
分割树,将新表和旧表分割成两个树,并判断索引处节点的长度是否需要转换成红黑树放入新表存储
-
通过Do循环 不断获取新旧索引的节点
-
通过判定将旧数据和新数据存储到新表指定的位置
-
-
门限值等于(负载因子)x(容量),如果构建 HashMap 的时候没有指定它们,那么就是依据相应的默认常量值。
门限通常是以倍数进行调整 (newThr = oldThr << 1),我前面提到,根据 putVal 中的逻辑,当元素个数超过门限大小时,则调整 Map 大小。
扩容后,需要将老的数组中的元素重新放置到新的数组,这是扩容的一个主要开销来源。