机器学习数据划分

基于目前的经验,机器学习中的数据划分主要为两种:

1. 当数据量较大时,可直接划分为train data、valid data、test data。其中,train data用于训练模型,valid data用于从训练得到的多个模型中选择一个最合适的模型,test data用于确定模型的最终效果。

2. 当数据量较小时,可采用交叉验证,交叉验证的方法有很多,主要用的有5折交叉验证、10折交叉验证和留一法。需要注意的是,交叉验证的方法将数据划分为train data和test data,没有valid data。那么最合适的模型怎么选择呢?交叉验证法是将n次交叉验证的平均结果作为选择最合适的模型的依据。

阅读更多
个人分类: 机器学习
上一篇【阅读笔记】新智元:深度学习为什么深?--周志华
下一篇win10+gtx1080ti配置cuda,cudnn,tensorflow 经验记录
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭