leetCode 72.Edit Distance (编辑距离) 解题思路和方法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xygy8860/article/details/46929835

Edit Distance


Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

 别人的思路:

自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance。受到一篇Edit Distance介绍文章的启发,本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行讲解。 

1. what is minimal edit distance?
简单地说,就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到另一个字符串s2的最少步骤数。熟悉算法的同学很容易知道这是个动态规划问题。 
其实一个替换操作可以相当于一个delete+一个insert,所以我们将权值定义如下:
I  (insert):1
D (delete):1
S (substitute):2

2. example:
intention->execution
Minimal edit distance:
delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=8

3.calculate minimal edit distance dynamically
思路见注释,这里D[i,j]就是取s1前i个character和s2前j个character所得minimal edit distance
三个操作动态进行更新:
D(i,j)=min { D(i-1, j) +1, D(i, j-1) +1 , D(i-1, j-1) + s1[i]==s2[j] ? 0 : 2};中的三项分别对应D,I,S。(详见我同学的博客)


因为本题的替换操作权重同样为1,故字符不相等+1即可。

代码如下:

public class Solution {
    public int minDistance(String word1, String word2) {
        //边界条件
        if(word1.length() == 0)
    		return word2.length();
    	if(word2.length() == 0)
    		return word1.length();
        /*
         * 本题用动态规划的解法
         * f[i][j]表示word1的前i个单词到word2前j个单词的最短距离
         * 状态转移方程:f[i][j] = 
         */
        
        int[][] f = new int[word1.length()][word2.length()];
        boolean isEquals = false;//是否已经有相等
        for(int i = 0 ; i < word2.length(); i++){
            //如果相等,则距离不增加
            if(word1.charAt(0) == word2.charAt(i) && !isEquals){
                f[0][i] = i > 0 ? f[0][i-1]:0;//不能从0开始
                isEquals = true;
            }else{
                f[0][i] = i > 0 ? f[0][i-1]+1:1;
            }
        }
        isEquals = false;//是否已经有相等
        for(int i = 1 ; i < word1.length(); i++){
            //如果相等,则距离不增加
            if(word1.charAt(i) == word2.charAt(0) && !isEquals){
                f[i][0] =  f[i-1][0];//不能从0开始
                isEquals = true;
            }else{
                f[i][0] = f[i-1][0]+1;
            }
        }
        
        for(int i = 1; i < word1.length();i++){
            for(int j = 1; j < word2.length(); j++){
                if(word1.charAt(i) == word2.charAt(j)){
                    f[i][j] = f[i-1][j-1];//相等的话直接相等
                }else{
                    f[i][j] = f[i-1][j-1]+1;
                }
                //然后与从f[i-1][j]+1,f[i][j-1]+1比较,取最小值
                f[i][j] = Math.min(f[i][j],Math.min(f[i-1][j]+1,f[i][j-1]+1));
            }
        }
        return f[word1.length()-1][word2.length()-1];
    }
}



阅读更多
换一批

没有更多推荐了,返回首页