【BZOJ2301】problem b,数论之莫比乌斯反演

Time:2016.05.27
Author:xiaoyimi
转载注明出处谢谢


传送门
思路:
di=cbj=a[gcd(i,j)=k]

=di=1bj=1[gcd(i,j)=k]c1i=1bj=1[gcd(i,j)=k]di=1a1j=1[gcd(i,j)=k]+c1i=1a1j=1[gcd(i,j)=k]

可以观察到上面这四个式子都是类似的,我们只用处理一个就好
这里选用
di=1bj=1[gcd(i,j)=k]

i=ki,j=kj

=dki=1bkj=1[gcd(i,j)=1]

=dki=1bkj=1p|gcd(i,j)μ(p)

b<=d,a<=c

=dki=1bkj=1[p|i][p|j]μ(p)

=bkp=1bpkdpkμ(p)

μ可以前缀和处理,然后bpkdpk的取值只有n个,每次O(nn)分块处理,总复杂度O(nn)
注意:
1.实测不用开long long
2.推式子一定要细心,我刚开始就推错了好几次,尤其是分别处理4个式子,并且搞混了abcd……
3.好久不碰数论,欧拉筛都不会了……
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#define M 50004
using namespace std;
int n,a,b,c,d,k;
int mu[M],prime[M];
bool vis[M];
int in()
{
    char ch=getchar();int t=0;
    while (!isdigit(ch)) ch=getchar();
    while (isdigit(ch)) t=(t<<3)+(t<<1)+ch-48,ch=getchar();
    return t;
}
int solve(int x,int y)
{
    if (x>y) swap(x,y);
    int ans=0,last;
    for (int i=1;i<=x;i=last+1)
    {
        last=min(x/(x/i),y/(y/i));
        ans+=(mu[last]-mu[i-1])*(x/i)*(y/i);
    }
    return ans;
}
main()
{
    mu[1]=1;
    for (int i=2;i<=50000;i++)
    {
        if (!vis[i])
            prime[++prime[0]]=i,
            mu[i]=-1;
        for (int j=1;j<=prime[0];j++)
            if (prime[j]*i>50000) break;
            else
            {
                vis[i*prime[j]]=1;
                if (i%prime[j])
                    mu[i*prime[j]]=-mu[i];
                else
                {
                    mu[i*prime[j]]=0;
                    break;
                }
            }
    }
    for (int i=2;i<=50000;i++) mu[i]+=mu[i-1];
    n=in();
    while (n--)
    {
        a=in()-1;b=in();c=in()-1;d=in();k=in();
        a/=k;b/=k;c/=k;d/=k;
        printf("%d\n",solve(b,d)-solve(b,c)-solve(d,a)+solve(a,c)); 
    }
}
发布了374 篇原创文章 · 获赞 74 · 访问量 25万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览