【BZOJ2844】albus就是要第一个出场,线性基

Time:2016.08.29
Author:xiaoyimi
转载注明出处谢谢



传送门
喜闻乐见的线性基乱搞题
如果n个数消出m个线性基,那么这n个数能异或出的值有2m
这个很显然,但还有个很神奇的性质
2m种值各会出现2nm
这就很简单了是不是啊
枚举x的每个二进制位
sum[i]表示第1-i位上的线性基个数,m表示n个数总共的线性基个数
如果当前位i为1,那么ans就要加上2nm+sum[i1]
第i位上的线性基不能算,所以从i-1位上开始算起,共2sum[i1]种线性基,每种2nm
复杂度就是求线性基的复杂度O(31n)
代码:

#include<cstdio>
#define mo 10086
#define M 100003
using namespace std;
int n,x,sum;
int a[M],lb[32];
int qr(int x,int y)
{
    int t=1;
    for (;y;y>>=1,x=x*x%mo)
        if (y&1) t=t*x%mo;
    return t;
}
int in()
{
    int t=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='0'&&ch<='9') t=(t<<3)+(t<<1)+ch-48,ch=getchar();
    return t;
}
main()
{
    n=in(); 
    for (int i=1;i<=n;++i) a[i]=in();
    x=in();
    for (int j=1;j<=n;++j)
        for (int i=30;i>=0;--i)
            if (a[j]>>i&1)
                if (!lb[i]) 
                    {lb[i]=a[j];++sum;break;}
                else
                    a[j]^=lb[i];
    int ans=1,tt=sum;
    for (int i=30;i>=0;--i)
    if (lb[i])
    {
        --sum;
        if (x>>i&1)
            ans=(ans+qr(2,sum+n-tt))%mo;
    }
    printf("%d\n",ans);
}
阅读更多
版权声明:不转不是中国人!(滑稽) https://blog.csdn.net/xym_CSDN/article/details/52356340
上一篇【BZOJ1923】外星千足虫,高斯消元解xor方程组
下一篇【BZOJ2151】种树,贪心+Splay乱搞
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭