anaconda jupyter windows pycharm 环境配置无废话

这里不讲anaconda的安装,参照如下教程安装anaconda安装教程,不要进行最后一步1.4

直接百度搜索清华源,按照官方指导走一遍https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
如果你看不懂,就是终端里面执行conda config --set show_channel_urls yes
然后给下面的一大堆东西粘贴到C:\Users\你的用户名.condarc 这个文件里面去

去开始菜单,你只需要使用到上面这个终端
请添加图片描述
去anaconda powershell prompt终端,看看你就这些环境
去终端,看看你就这些环境
直接在base环境中运行这五行代码,jupyter就安装成功了

# anaconda的base中默认有jupyter,严谨起见
conda install jupyter

# 可以使用tab更高效的编码
conda install pyreadline

# 自动联动环境
conda install nb_conda

# 进入配置的环境,安装IPY内核(安装了的环境才能被jupyter识别)
conda activate paddle_env
conda install ipykernel

* 想要配置pycharm的请直接往下跳到2022.4.8更新:

之后每次需要进入jupyter时,先进入项目文件夹,然后复制文件目录后进入终端输入如下指令打开,即可同时指定工作路径;你可以把项目文件夹固定到开始菜单来加快这一过程的速度

jupyter notebook D:\Python_project\4C2022

FYI: 如果你嫌麻烦可以参考这个网站的第3部分修改config文件,这种方法每次用任何方法进入jupyter都会以指定的目录为工作路径,要修改则需要重新修改config文件(某种程度上来说也很麻烦);

打开jupyter之后你看到的就是工作目录,可以在这里新建、打开ipynb文件,初次打开文件需要指定环境,也可以在下图位置切换环境;
请添加图片描述

2022.4.8更新:

如果你想使用pycharm,在运行了上面的“五行代码”之后直接进入pycharm,新建一个文件夹并在新建pycharm项目时将其设置为项目目录,首先点击灯泡开启jupter server
在这里插入图片描述
之后进入设置,设选择你配置好的conda环境如下图的下面三个箭头所示
在这里插入图片描述
对比上下图,可以看到此时你不需要刻意配置工作目录,文件所在目录即为工作目录
在这里插入图片描述
下面这玩意有心情就改,就算你不改运行的时候他也会提醒你要改
在这里插入图片描述

至此,环境配置完毕

引用

### 如何在Anaconda配置Jupyter Notebook以与PyCharm集成 #### 一、安装Anaconda并验证其功能 为了确保后续步骤顺利进行,需先确认Anaconda已正确安装。通过运行命令`conda --version`来检查是否能返回当前Conda的版本号[^2]。 #### 二、创建虚拟环境(可选) 如果希望隔离项目依赖关系,则可以创建一个新的Conda虚拟环境: ```bash conda create -n myenv python=3.9 ``` 激活该新环境: ```bash conda activate myenv ``` #### 三、安装必要的软件包 无论是在默认环境下还是新建的虚拟环境中,都需要确保安装了Jupyter Notebook以及IPykernel以便支持跨IDE交互。 ```bash conda install jupyter notebook ipykernel ``` 接着向此特定环境添加一个可供其他工具识别的Kernel名称: ```bash python -m ipykernel install --user --name=myenv --display-name "Python (myenv)" ``` 这里假设之前创建了一个名为`myenv`的新环境;如果不是,请替换为实际使用的环境名[^1]。 #### 四、启动Jupyter Notebook测试连接性 执行如下指令开启服务端口监听模式下的Notebook实例: ```bash jupyter notebook ``` 打开浏览器访问指定地址,默认情况下应该是http://localhost:8888/ ,尝试加载一些简单的Python脚本片段观察效果如何。 #### 五、设置PyCharm解释器指向正确的Conda路径 进入PyCharm首选项菜单中的Project Interpreter部分,点击齿轮图标选择Add...选项,在弹出窗口里找到System Interpreter类别下拉列表底部有一个显示“Show All...”链接的地方单击它。之后再按右上角加号按钮新增一条记录,浏览定位至刚才所建立的那个Conda Environment目录结构内部寻找对应平台架构上的python.exe文件位置完成关联绑定操作即可。 此时应该可以在PyCharm里面正常调用由Anaconda管理维护的各种库资源,并且也能够无缝切换不同Kernel之间的工作状态从而实现真正意义上的多场景协作开发体验目标。 ```python import torch print(torch.__version__) ``` 上述代码可用于检测PyTorch是否成功安装及工作正常。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值