[BZOJ4710][JSOI2011]分特产(组合数学+容斥原理)

首先不考虑要每个人都分到特产。这样对于一种数量为 k 的特产,就相当于把一个数k分成 n 个非负整数的方案数,两种方案相同当且仅当对于任意一个1in,在两种方案中分成的第 i 个非负整数相同。怎么求这个值呢?
首先,把问题看作把一个数k+n分成 n 个正整数。根据两种方案相同的定义,可以把问题看成一个长度为k+n的线段,切成 n 条长度为正整数的线段。容易得到,有k+n1个可切的位置,要切 n1 次,相同的位置不能切两次以上,而且与切的顺序无关。所以结果为 Cn1k+n1
(以下 Ai 为第 i 种特产的数量)
所以不一定要每个人都分到特产的方案数为mi=1Cn1Ai+n1
考虑每个人都要分到特产,就可以使用容斥原理,即:
都分到特产的方案数 1个没分到特产的方案数 + 2个没分到特产的方案数 ...
所以结果为 ni=0(1)iCinmj=1Cni1Ai+ni1
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int MaxN = 2000, N = MaxN + 5, PYZ = 1e9 + 7;
int n, m, a[N], C[N][N];
void init() {
    int i, j; for (i = 0; i <= MaxN; i++) C[i][0] = 1;
    for (i = 1; i <= MaxN; i++) for (j = 1; j <= i; j++)
        C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % PYZ;
}
int sum_cnt(int n) {
    int i, ans = 1;
    for (i = 1; i <= m; i++) ans = 1ll * ans * C[a[i] + n - 1][n - 1] % PYZ;
    return ans;
}
int main() {
    int i, ans = 0; n = read(); m = read(); init();
    for (i = 1; i <= m; i++) a[i] = read();
    for (i = 0; i <= n; i += 2)
        (ans += 1ll * C[n][i] * sum_cnt(n - i) % PYZ) %= PYZ;
    for (i = 1; i <= n; i += 2)
        ans = (ans - 1ll * C[n][i] * sum_cnt(n - i) % PYZ + PYZ) % PYZ;
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值