1. 奇偶判断
不要使用 i % 2 == 1 来判断是否是奇数,因为i为负奇数时不成立,请使用 i % 2 != 0 来判断是否是奇数,或使用高效式 (i & 1) != 0来判断。
2. 小数精确计算
上面的计算出的结果不是 0.9,而是一连串的小数。问题在于1.1这个数字不能被精确表示为一个double,因此它被表示为最接近它的double值,该程序从2中减去的就是这个值,但这个计算的结果并不是最接近0.9的double值。一般地说,问题在于并不是所有的小数都可以用二进制浮点数精确表示。二进制浮点对于货币计算是非常不适合的,因为它不可能将1.0表示成10的其他任何负次幂。
解决问题的第一种方式是使用货币的最小单位(分)来表示:
第二种方式是使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构造,因为在将float或double转换成String时精度已丢失)。例如new BigDecimal(0.1),它将返回一个BigDecimal,也即
0.1000000000000000055511151231257827021181583404541015625,正确使用BigDecimal,程序就可以打印出我们所期望的结果0.9:
另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。如果你还想更深入了解下,请参考:[url] http://jiangzhengjun.iteye.com/blog/636761[/url]
3. int整数相乘溢出
我们计算一天中的微秒数:
问题在于计算过程中溢出了。这个计算式完全是以int运算来执行的,并且只有在运算完成之后,其结果才被提升为long,而此时已经太迟:计算已经溢出。解决方法使计算表达式的第一个因子明确为long型,这样可以强制表达式中所有的后续计算都用long运算来完成,这样结果就不会溢出:
不要使用 i % 2 == 1 来判断是否是奇数,因为i为负奇数时不成立,请使用 i % 2 != 0 来判断是否是奇数,或使用高效式 (i & 1) != 0来判断。
2. 小数精确计算
- System.out.println(2.00 -1.10);//0.8999999999999999
上面的计算出的结果不是 0.9,而是一连串的小数。问题在于1.1这个数字不能被精确表示为一个double,因此它被表示为最接近它的double值,该程序从2中减去的就是这个值,但这个计算的结果并不是最接近0.9的double值。一般地说,问题在于并不是所有的小数都可以用二进制浮点数精确表示。二进制浮点对于货币计算是非常不适合的,因为它不可能将1.0表示成10的其他任何负次幂。
解决问题的第一种方式是使用货币的最小单位(分)来表示:
- System.out.println(200-110);//90
第二种方式是使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构造,因为在将float或double转换成String时精度已丢失)。例如new BigDecimal(0.1),它将返回一个BigDecimal,也即
0.1000000000000000055511151231257827021181583404541015625,正确使用BigDecimal,程序就可以打印出我们所期望的结果0.9:
- System.out.println(new BigDecimal("2.0").subtract(new BigDecimal("1.10")));// 0.9
另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。如果你还想更深入了解下,请参考:[url] http://jiangzhengjun.iteye.com/blog/636761[/url]
3. int整数相乘溢出
我们计算一天中的微秒数:
- long microsPerDay = 24 * 60 * 60 * 1000 * 1000;// 正确结果应为:86400000000
- System.out.println(microsPerDay);// 实际上为:500654080
问题在于计算过程中溢出了。这个计算式完全是以int运算来执行的,并且只有在运算完成之后,其结果才被提升为long,而此时已经太迟:计算已经溢出。解决方法使计算表达式的第一个因子明确为long型,这样可以强制表达式中所有的后续计算都用long运算来完成,这样结果就不会溢出:
- long microsPerDay = 24L * 60 * 60 * 1000 * 1000;