介绍
我将为大家介绍如何使用 llama-factory Lora 微调模型、部署模型、使用python调用API。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
llama-factory 安装
首先建议大家阅读一遍两份不错的文章:
- 官方readme: https://github.com/hiyouga/LLaMA-Factory/blob/v0.9.1/README_zh.md
- 官方推荐的知乎教程:https://zhuanlan.zhihu.com/p/695287607
- 官方文档: https://llamafactory.readthedocs.io/zh-cn/latest/
我这篇博客的与他们的不同在于,我按照我做实验的流程,给大家演示一遍。方便大家一看就懂,心里对大致的流程有个大概。
装包
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]"
LLaMA-Factory 默认是从Huggingface 下载模型,建议大家改为从国内下载模型。
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
export USE_MODELSCOPE_HUB=1
Windows 使用set USE_MODELSCOPE_HUB=1
将 model_name_or_path 设置为模型 ID 来加载对应的模型。在魔搭社区查看所有可用的模型,例如 LLM-Research/Meta-Llama-3-8B-Instruct。
您也可以通过下述方法,使用魔乐社区下载数据集和模型。
export USE_OPENMIND_HUB=1
Windows 使用set USE_OPENMIND_HUB=1
将 model_name_or_path 设置为模型 ID 来加载对应的模型。在魔乐社区查看所有可用的模型,例如 TeleAI/TeleChat-7B-pt。
下载模型
我喜欢使用可视化的网站页面下载模型权重。
llamafactory-cli webui
启动服务之后,进入主机对应的 ip 和端口就可以看到网页。
在 Model name 下拉框中挑选模型,选中之后,再点击下述的加载模型。如果模型权重没有下载,则会进行下载,然后加载进显存中。在下方就会出现对话框就可以与模型进行对话了。
微调模型
数据集
点击 Train 后, 就可以看到当前可用的很多数据集。
在选中数据集后,点击预览数据集,即可看到数据集的样例。如果我们想微调模型,也需要把数据集的样式给整理成上述格式。
点击查看关于数据集的说明:https://github.com/hiyouga/LLaMA-Factory/tree/v0.9.1/data
大家仿照alpaca_zh_demo.json
的样式准备好数据集,然后在dataset_info.json
完成数据集的注册。
注册数据集, 下图是我在dataset_info.json
注册的guihua_ner
数据集,然后就可以找到该数据集,并训练模型:
训练模型
可以直接点击可视化界面的 Start 按钮训练模型。也可点击预览命令查看在终端运行的命令。
我一般不使用可视化窗口训练模型。我喜欢直接运行训练模型的命令
llamafactory-cli train \ --stage sft \ --do_train True \ --model_name_or_path qwen/Qwen2.5-7B-Instruct \ --preprocessing_num_workers 16 \ --finetuning_type lora \ --template qwen \ --flash_attn auto \ --dataset_dir data \ --dataset alpaca_zh_demo \ --cutoff_len 2048 \ --learning_rate 5e-05 \ --num_train_epochs 3.0 \ --max_samples 100000 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 5 \ --save_steps 100 \ --warmup_steps 0 \ --packing False \ --report_to none \ --output_dir saves/Qwen2.5-7B-Instruct/lora/train_2024-11-25-09-56-29 \ --bf16 True \ --plot_loss True \ --ddp_timeout 180000000 \ --optim adamw_torch \ --lora_rank 8 \ --lora_alpha 16 \ --lora_dropout 0 \ --lora_target all
除了使用上述的命令行方式训练模型外,llama-factory还提供了使用 yaml 文件训练模型的方式。
在example
文件夹下可看到很多训练和推理的 yaml 文件,针对其中的参数就行修改,即可使用。
我以微调qwen/Qwen2.5-7B-Instruct
为例:
qwen2.5-7B-ner.yaml
文件内容:
### model model_name_or_path: qwen/Qwen2.5-7B-Instruct ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset: guihua_ner template: qwen cutoff_len: 2048 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/qwen2.5-7B/ner_epoch5 logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 5.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.1 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 500
在 llamafactory-cli train 后,填入 yaml 文件的路径:
llamafactory-cli train config/qwen2.5-7B-ner.yaml
然后就会开始训练模型,最终训练完成的模型保存在output_dir: saves/qwen2.5-7B/ner_epoch5
。
在输出文件夹路径中,可以找到训练过程的损失值变化图片。
微调后的模型推理
在完成模型的微调后,测试一下模型的微调效果。对于微调模型推理,除原始模型和模板外,还需要指定适配器路径 adapter_name_or_path 和微调类型 finetuning_type。
lora_vllm.yaml
的文件内容如下:
model_name_or_path: qwen/Qwen2.5-7B-Instruct adapter_name_or_path: ../saves/qwen2.5-7B/ner_epoch5 template: qwen finetuning_type: lora infer_backend: vllm vllm_enforce_eager: true
运行下述命令,就可以看到下图的对话窗口:
`llamafactory-cli webchat lora_vllm.yaml`
根据上图命名实体识别的输出,可以发现微调模型确实有效果。
除了网页聊天的部署之外,还可通过下述多种方式进行部署:
# llamafactory-cli chat xxx.yaml # llamafactory-cli webchat xxx.yaml # API_PORT=8000 llamafactory-cli api xxx.yaml
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓