Codeforces-1907C.Removal of Unattractive Pairs

文章讨论了如何在给定字符串中,通过消除一个特定的最长字符串,使得其他字符的长度都大于等于最长字符串长度。通过分析字符出现频率和题目条件,解决了一个关于字符串消除后剩余字符数量的问题。代码给出了C++实现。
摘要由CSDN通过智能技术生成

原题链接:Problem - C - Codeforces

如果存在一个最长的字符串,我又没有可能把他消掉?
答案是,只要其他字符的长度大于等于最长字符串的长度,就一定能把他消掉。
所以我们不考虑字符串是怎么消除的,直接看结果。

原因解释如下
1.该最长字符串一定和其他字符相连,则消除操作显然。
2.如果在执行某个消除操作后遇到了与最长字符串同一字符,则更新最长字符串,情况又回到了1。
3.执行多个2后,这道题就成了找一个字符出现的最多次数。

特判考虑
1.如果n为奇数,至少剩一个字符
2.设最长字符串(即一个字符出现的最多次数)为len,如果len<=n/2,则能全部消掉,但如果是奇数还会剩一个
3.如果2*len>n 则一定剩2*len-n个字符

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        char s[1000005];
        scanf("%d%s",&n,s);
        int a[30]={0};
        for(int i=0;s[i];i++)a[s[i]-97]++;
        int len=0;
        for(int i=0;i<26;i++)len=max(len,a[i]);
        if(2*len<=n)   printf("%d\n",n%2==0?0:1);
        else printf("%d\n",2*len-n);
    }
    return 0;
}

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值