回顾单链表的五种排序

1.冒泡排序

基本思想:   

        把第一个元素与第二个元素比较,如果第一个比第二个大,则交换他们的位置。接着继续比较第二个与第三个元素,如果第二个比第三个大,则交换他们的位置…   我们对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样一趟比较交换下来之后,排在最右的元素就会 是最大的数。除去最右的元素,我们对剩余的元素做同样的工作,如此重复下去,直到排序完成。

具体步骤:   

1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。   

2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。   

3.针对所有的元素重复以上的步骤,除了最后一个。   

4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

时间复杂度:O(N2)

空间复杂度:O(1)

稳定排序:是

原地排序:是

Node *BubbleSort(Node *phead)
{

	Node * p = phead;
	Node * q = phead->next;
	/*有几个数据就-1;比如x 个i<x-1*/
	for(int i=0;i<5;i++)
	{ 
		while((q!=NULL)&&(p!=NULL))
		{ 
			if(p->data>q->data)
			{
				/*头结点和下一节点的交换,要特殊处理,更新新的头head*/
				if (p == phead)
				{
					p->next = q->next;
					q->next = p;
					head = q;
					phead = q;
					/*这里切记要把p,q换回来,正常的话q应该在p的前面,进行的是p,q的比较
					*但是经过指针域交换之后就变成q,p.再次进行下一次比较时,
					*就会变成q,p的数据域比较。假如原本p->data > q->data,则进行交换。变成q->data和p->data比较,
					*不会进行交换,所以排序就会错误。有兴趣的可以调试下。
					*/	
					Node*temp=p; 
					p=q;
					q=temp;		
				}
				/*处理中间过程,其他数据的交换情况,要寻找前驱节点if (p != phead)*/
				else 
				{
					/*p,q的那个在前,那个在后。指针域的连接画图好理解一点*/
					if (p->next == q)
					{
						/*寻找p的前驱节点*/
						Node *ppre = FindPreNode(p);
						/*将p的下一个指向q的下一个*/
						p->next = q->next;
						/*此时q为头结点,让q的下一个指向p,连接起来*/
						q->next = p;
						/*将原来p的前驱节点指向现在的q,现在的q为头结点*/
						ppre->next = q;
						Node*temp=p; 
						p=q; 
						q=temp;
					}
					else if (q->next == p)
					{
						Node *qpre = FindPreNode(q);
						q->next = p->next;
						p->next = q;
						qpre->next = p;
						Node*temp=p;
						p=q; 
						q=temp;
						}									
				}		
			}
			/*地址移动*/
			p = p->next;
			q = q->next;
		}
		/*进行完一轮比较后,从头开始进行第二轮*/
		p = phead;
		q = phead->next;	
	}
	
	head = phead;
	return head;
}
2.快速排序

基本思想   

        我们从数组中选择一个元素,我们把这个元素称之为中轴元素吧,然后把数组中所有小于中轴元素的元素放在其左边, 所有大于或等于中轴元素的元素放在其右边,显然,此时中轴元素所处的位置的是有序的。也就是说,我们无需再移动中轴 元素的位置。   从中轴元素那里开始把大的数组切割成两个小的数组(两个数组都不包含中轴元素),接着我们通过递归的方式,让中轴元素 左边的数组和右边的数组也重复同样的操作,直到数组的大小为1,此时每个元素都处于有序的位置。

具体步骤:   

1.从数列中挑出一个元素,称为 “基准”(pivot);   

2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;   

3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

时间复杂度:O(NlogN)

空间复杂度:O(logN)

稳定排序:否

原地排序:是

int *QuickSort(Node* pBegin, Node* pEnd)
{
    if(pBegin == NULL || pEnd == NULL || pBegin == pEnd)
        return 0;
 
    //定义两个指针
    Node* p1 = pBegin;
    Node* p2 = pBegin->next;
    int pivot = pBegin->data;

	//每次只比较小的,把小的放在前面。经过一轮比较后,被分成左右两部分。其中p1指向中值处,pbegin为pivot。
    while(p2 != NULL)/* && p2 != pEnd->next */
	{
        if(p2->data < pivot)
		{
            p1 = p1->next;
            if(p1 != p2)
			{
                SwapData(&p1->data, &p2->data);
        	}
      	}
        p2 = p2->next;
   }
   /*此时pivot并不在中间,我们要把他放到中间,以他为基准,把数据分为左右两边*/
    SwapData(&p1->data, &pBegin->data);
    //此时p1是中值节点
	//if(p1->data >pBegin->data)
    QuickSort(pBegin, p1);
	//if(p1->data < pEnd->data)
    QuickSort(p1->next, pEnd);

}
3.插入排序

基本思想:每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。

具体步骤:   

1.将待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列; 

2.取出下一个元素,在已经排序的元素序列中从后向前扫描;   

3.如果该元素(已排序)大于新元素,将该元素移到下一位置;   

4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;   

5.将新元素插入到该位置后;   

6.重复步骤2~5。

时间复杂度:O(N2)

空间复杂度:O(1)

稳定排序:是

原地排序:是

Node *InsertSort(Node *phead)  
{  
	/*为原链表剩下用于直接插入排序的节点头指针*/  
    Node *unsort; 
	/*临时指针变量:插入节点*/
    Node *t;  
	/*临时指针变量*/  
    Node *p; 
	/*临时指针变量*/  
    Node *sort; 
	/*原链表剩下用于直接插入排序的节点链表:可根据图12来理解。*/  
    unsort = phead->next; 
	/*只含有一个节点的链表的有序链表:可根据图11来理解。*/  
    head->next = NULL; 
  	/*遍历剩下无序的链表*/ 
    while (unsort != NULL)  
    {  
        /*注意:这里for语句就是体现直接插入排序思想的地方*/
		/*无序节点在有序链表中找插入的位置*/  
		/*跳出for循环的条件:
		*1.sort为空,此时,sort->data < t->data,p存下位置,应该放在有序链表的后面
		*2.sort->data > t->data ,跳出循环时,t->data放在有序链表sort的前面
		*3.sort为空 sort->data > t->data,也插入在sort前面的位置
		*/  
		/*q为有序链表*/
        for (t = unsort, sort = phead; ((sort != NULL) && (sort->data < t->data)); p = sort, sort = sort->next); 
      
   		 /*退出for循环,就是找到了插入的位置插入位置要么在前面,要么在后面*/  
    	/*注意:按道理来说,这句话可以放到下面注释了的那个位置也应该对的,但是就是不能。原因:你若理解了上面的第3条,就知道了。*/  
       /*无序链表中的第一个节点离开,以便它插入到有序链表中。*/
	    unsort = unsort->next;    
		/*插在第一个节点之前*/ 
		/*sort->data > t->data*/
		/*sort为空 sort->data > t->data*/
        if (sort == phead)  
        {  
			/*整个无序链表给phead*/
            phead = t;  
        }  
		/*p是sort的前驱,这样说不太确切,当sort到最后时,for里面有个sort = sort->next,
		*就会把sort置空,所以要用p暂存上一次sort的值。而且执行判断sort->data < t->data时,用的也是上一次的sort
		*/
		/*sort后面插入*/
		/*sort遍历到了最后,此时,sort->data < t->data,sort和p都为最后一个元素。*/ 
        else  
        {  
            p->next = t;  
        }  
		/*if处理之后,t为无序链表,因为要在phead前插入。这里先把t赋值给phead,再把t的next指向sort,
		*就完成了在sort之前插入小的元素,很巧妙的一种方法
		*else处理完之后,sort存放的是sort的下一次,真正的sort存放在p中。不满足条件跳出循环时,判断的是下一次的sort,
		但是我们要用的插入的位置为上一次的sort,所以要记录下sort上一次的位置
		*/
		/*完成插入动作*/
		/*当sort遍历完成为空时,t->next就是断开后面的元素(sort为空)*/
		/*当sort不为空时,sort->data > t->data,sort存放的元素比t要大,放在后面,t->next就是再链接起来sort*/
        t->next = sort;   
        /*unsort = unsort->next;*/  
    }  
	head = phead;
    return phead;  
}  
4.选择排序

基本思想

        首先,找到数组中最小的那个元素,其次,将它和数组的第一个元素交换位置(如果第一个元素就是最小元素那么它就和自己交换)。其次,在剩下的元素中找到最小的元素,将它与数组的第二个元素交换位置。如此往复,直到将整个数组排序。这种方法我们称之为选择排序。

具体步骤:   

1.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。   

2.再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。   

3.重复第二步,直到所有元素均排序完毕。

时间复杂度:O(N2)

空间复杂度:O(1)

稳定排序:否

原地排序:是

Node* SelectSort(Node* phead)                                                
{                                                                                                             
	Node *temp;
	Node *temphead = phead;
	/*将第一次的最大值设置为头结点*/
	int max = phead->data;
	/*交换变量*/
	 for(int i = 0;i<LengthList(phead);i++)
	 {
		 /*每次遍历开始前都要把最大值设置为头结点*/
		  max = phead->data;
		while (temphead->next !=NULL)
		{
			/*寻找最大值*/
			if(max < temphead->next->data)
			{
				max =  temphead->next->data;
			}
			/*移动指针位置*/
			temphead = temphead->next;
		}	
		/*找到最大值的位置*/
		temp = FindList(max);
		/*判断最大值是否和头节点相同*/
		if(phead != temp)
		{
			SwapNode(phead,temp);		
		}
		/*更新下一次遍历的头结点*/
		temphead = temp->next;
		phead = temphead;
	 }

} 
5.归并排序

基本思想

        归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法: 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法); 自下而上的迭代;

具体步骤:   

1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;   

2.设定两个指针,最初位置分别为两个已经排序序列的起始位置;   

3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;   

4.重复步骤 3 直到某一指针达到序列尾;   

5.将另一序列剩下的所有元素直接复制到合并序列尾。

时间复杂度:O(NlogN)

空间复杂度:O(N)

稳定排序:是

原地排序:否

/*获取链表中间元素*/
Node *getMiddleNode(Node *pList)
{
    if (pList == NULL)
    {
        return NULL;
    }
    Node *pfast = pList->next;
    Node *pslow = pList;
    while (pfast != NULL)
    {
         pfast = pfast->next;
         if (pfast != NULL)
         {
             pfast = pfast->next;
             pslow = pslow->next;
         }
 
    }
 
    return pslow;
}
 /*合并有序链表,合并之后升序排列*/
Node *MergeList(Node *p1, Node *p2) 
{
    if (NULL == p1)
    {
        return p2;
    }
    if (NULL == p2)
    {
        return p1;
    }
 
    Node *pLinkA = p1;
    Node *pLinkB = p2;
    Node *pTemp = NULL;
	/*较小的为头结点,pTemp存下头结点*/
    if (pLinkA->data <= pLinkB->data)
    {
        pTemp = pLinkA;
        pLinkA = pLinkA->next;
    }
    else
    {
        pTemp = pLinkB;
        pLinkB = pLinkB->next;
    }
	/*初始化头结点,即头结点指向不为空的结点*/
    Node *pHead = pTemp; 
    while (pLinkA && pLinkB)
    {
        /*合并先放小的元素*/
		if (pLinkA->data <= pLinkB->data)
        {
            pTemp->next = pLinkA;
			/*保存下上一次节点。如果下一次为NULL,保存的上一次的节点就是链表最后一个元素*/
            pTemp = pLinkA;
            pLinkA = pLinkA->next;
        }
        else
        {
            pTemp->next = pLinkB;
            pTemp = pLinkB;
            pLinkB = pLinkB->next;
        }
 
    }
	/*跳出循环时,有一个为空。把不为空的剩下的部分插入链表中*/
    pTemp->next = pLinkA ? pLinkA:pLinkB; 
	head = pHead;
    return pHead;
	
}
Node *MergeSort(Node *pList)
{
    if (pList == NULL || pList->next == NULL)
    {
        return pList;
    }
	/*获取中间结点*/
    Node *pMiddle = getMiddleNode(pList); 
	/*链表前半部分,包括中间结点*/
    Node *pBegin = pList; 
	/*链表后半部分*/
    Node *pEnd = pMiddle->next;
	/*必须赋值为空 相当于断开操作。pBegin--pMiddle pEnd---最后 */
    pMiddle->next = NULL; 
	/*排序前半部分数据,只有一个元素的时候停止,即有序*/
    pBegin = MergeSort(pBegin); 
	/*排序后半部分数据 递归理解可以参考PrintListRecursion;*/
    pEnd = MergeSort(pEnd); 
	/*合并有序链表*/
    return MergeList(pBegin, pEnd); 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值