Agent——记忆模块

本文介绍了在Agent架构中,如何利用LangChain库实现8种不同的记忆管理方式,适用于不同场景,如客服、商品咨询、法律咨询等。通过全量历史对话、滑动窗口、实体信息获取、知识图谱利用、阶段总结、最新对话回顾和向量检索等方法,提高对话的连贯性和准确性。
摘要由CSDN通过智能技术生成

在基于大模型的 Agent架构设计方面,论文[1]提出了一个统一的框架,包括Profile模块、Memory模块、Planning模块和Action模块。其中长期记忆的状态维护至关重要,在 OpenAI AI 应用研究主管 Lilian Weng 的博客《基于大模型的 Agent 构成》[2]中,将记忆视为关键的组件之一,下面我将结合 LangChain 中的代码,8 种不同的记忆维护方式在不同场景中的应用。

1. 获取全量历史对话

一般客服场景

在电信公司的客服聊天机器人场景中,如果用户在对话中先是询问了账单问题,接着又谈到了网络连接问题,ConversationBufferMemory 可以用来记住整个与用户的对话历史,可以帮助 AI 在回答网络问题时还记得账单问题的相关细节,从而提供更连贯的服务。

from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
memory.save_context({"input": "你好"}, {"output": "怎么了"})

variables = memory.load_memory_variables({})

 2. 滑动窗口获取最近部分对话内容

商品咨询场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值