Flink项目最佳实践(二):第一个实时模拟ETL任务

本文介绍了如何使用Flink实现从socket读取数据并实时写入本地目录的ETL任务,通过模拟数据流展示了Flink在实时处理中的应用。代码示例包括添加依赖、运行socket server和查看结果。后续将探讨更多落地项目中的考虑因素,如Kafka消费、HDFS写入等。
摘要由CSDN通过智能技术生成

一、前情提要

上一篇中颗粒fencex讲到,Flink项目的初始化,主要介绍了,项目创建,依赖管理和工程配置管理。
详见:Flink项目最佳实践(一):初始化项目

本文讲解如何实现一个「从 socket 读取数据,实时写入到本地目录」,模拟实时 ETL 。
比起经典的 WordCount,这段代码更具有落地参考性。

二、本文目标

  • 终端输入模拟实时数据流
  • 数据落入本地文件夹,以当前日期为子文件夹

三、主要代码块

具体项目见参考:

package org.demo.flink.etl

import java.time.ZoneId

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.fs.bucketing.{
   BucketingSink, DateTimeBucketer}

object LogETL {
   
    def main(args: Array[String]) {
   
        val env = Stream
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值