【机器人学】2-2.六自由度机器人运动学逆解-奇异位形分析【附MATLAB代码】 通过D-H参数,选用改进型的D-H参数,可以得到各个关节间的旋转矩阵。详细请看我的第一篇博客。_六自由度机器人的雅可比矩阵通式。【机器人学】3-1.六自由度机器人速度域-雅克比矩阵【附MATLAB代码】_六自由度机器人的雅可比矩阵通式-CSDN博客。下一章:【机器人学】2-3.六自由度机器人运动学逆解-解的存在性与解的选取【附MATLAB代码】里面介绍了两种求解雅可比矩阵的方法,任选一种即可。
机器人学 目录 【机器人学】1-1.六自由度机器人运动学正解 【附MATLAB代码】【机器人学】1-2. MATLAB机器人工具箱的安装与问题处理【机器人学】1-3.六自由度机器人工作空间 【附MATLAB代码】【机器人学】2-1.六自由度机器人运动学逆解【附MATLAB机器人逆解代码】【机器人学】3-1.六自由度机器人速度域-雅克比矩阵【附MATLAB代码】【机器人学】4-1.六自由度机器人动力学-开篇-基础知识【机器人学】4-2.六自由度机器人动力学-牛顿欧拉递推式【附MATLAB代码】【机器人学】4-3.六自由度机器
空间解析几何 4:空间中线段到圆的距离【附MATLAB代码】 最近在研究机器人的干涉(碰撞)检测,遇到了一个问题,就是在求椭圆到原点的最短距离时,构建的方程是一个一元四次方程。无论是高中的初等数学,大学的高等数学,还是研究生的高等代数,都没有关于一元四次方程的求解方法,大多都是一元二次方程的求解。仔细一研究才知道为什么很少提及一元四次方程。下一章:空间解析几何5-空间圆到平面的距离【附MATLAB代码】一元四次方程求解 -【附MATLAB代码】-CSDN博客。对于解一元4次方程,请详见我的博客。
空间解析几何 1 :空间中直线、圆、椭圆的方程表示 所谓空间解析几何,就是在三维空间中,求两个图形的空间关系,如距离,夹角,这一张给出常用的三个图形,直线,圆,椭圆的空间方程,在实际应用中某些不规则图形也可以通过近似等效的方式进行分析。
MATLAB与C++参数传递(最完整) 通常 将MATLAB代码打包为.dll,.lib,.h文件供C++调用。而MATLAB通常用于算法的编写,输出只需要一个数组。打开一个MATLAB打包生成的.h文件,可以看到注册了这样一个函数。其中:int nargout:为输出参数的个数,通常为1,如果不为1,也尽量将输出参数放到一个数组里面输出,使得输出参数为1.其他参数mwArray& XXX 都是mwArray类型,这个数据类型是MATLAB库封装的。因此任何C++数据类型都必须转换成mwArray类型才可以传到MATLAB。
【机器人学】7-4.六自由度机器人自干涉检测-两圆柱体空间关系【附MATLAB代码】 前面介绍了两个圆柱的旋转变换,已将两个圆柱体旋转到了比较好分析的位置,下面将正式分析两个圆柱体的位置关系。会借用投影的思想。一 根据机械臂的几何数据以及DH参数,确定机械臂等效的圆柱体的上下圆心坐标。二 将一个圆柱体旋转到与坐标Z轴对齐,另一个圆柱体转到,上下圆在XoY平面的投影形成的椭圆在y方向上长轴为2r,这一个旋转流程的数学表达。三原点与椭圆的关系,求原点是否在椭圆内部,原点到椭圆的最短距离,线段与线段的最短距离。
【机器人学】7-3.六自由度机器人自干涉检测-圆柱体的旋转变换【附MATLAB代码】 上一章确定了机械臂等效的圆柱体的上下圆心坐标,这篇文章将解决算法三个核心中的第二个核心:一 根据机械臂的几何数据以及DH参数,确定机械臂等效的圆柱体的上下圆心坐标。二 将一个圆柱体旋转到与坐标Z轴对齐,另一个圆柱体转到,上下圆在XoY平面的投影形成的椭圆在y方向上长轴为2r,这一个旋转流程的数学表达。三 原点与椭圆的关系,求原点是否在椭圆内部,原点到椭圆的最短距离,线段与线段的最短距离。之所以要将圆柱体作旋转变换,是为了方便借用投影法分析。
matlab与VS混合编程以及错误解决 在实际开发中,通常要将matlab的函数供vs环境下的工程调用,本文将介绍混合编程的过程以及错误处理。本文主题: 将MATLAB打包生成的dll文件,用于VS工程调用。环境:注意: VS版本尽量不要高于matlab版本!!
一元四次方程求解 -【附MATLAB代码】 最近在研究机器人的干涉(碰撞)检测,遇到了一个问题,就是在求椭圆到原点的最短距离时,构建的方程是一个一元四次方程。无论是高中的初等数学,大学的高等数学,还是研究生的高等代数,都没有关于一元四次方程的求解方法,大多都是一元二次方程的求解。仔细一研究才知道为什么很少提及一元四次方程。
【机器人学】7-2.六自由度机器人自干涉检测-计算圆柱体的上下圆心坐标【附MATLAB代码】 上一章介绍了机器人自干涉检测的总体算法,提出了算法的三个核心:一 根据机械臂的几何数据以及DH参数,确定机械臂等效的圆柱体的上下圆心坐标。二 将一个圆柱体旋转到与坐标Z轴对齐,另一个圆柱体圆转到,上下圆在XoY平面的投影形成的椭圆在y方向上长轴为2r,这一个旋转流程的数学表达。三 原点与椭圆的关系,求原点是否在椭圆内部,原点到椭圆的最短距离,线段与线段的最短距离。【机器人学】7-1.六自由度机器人自干涉检测-总体算法介绍-CSDN博客这一章博客将解决第一个问题,
【机器人学】7-1.六自由度机器人自干涉检测-总体算法介绍 机器人在运行过程中,可能发生碰撞,碰撞物可以是外界物体,也可以是机器人自己的关节间发生碰撞,检测机器人与自己发生碰撞即为-机器人自干涉检测。自干涉检测技术的出现有助于提高机器人系统的安全性、可靠性和效率。理解了自干涉检测,想要扩展到与外物的干涉,分析方法都是一样的,主要理论核心其实是空间解析几何问题。即两个物体在三维空间中的几何关系。
【机器人学】6-5.六自由度机器人运动学参数辨识-逆运动学迭代解【附MATLAB代码】 上一章我们计算了机器人的绝对定位精度和重复定位精度。【机器人学】6-4.六自由度机器人运动学参数辨识-机器人精度验证【附MATLAB代码】我们在空间中走5个点,循环30次,激光测量仪一共采集150个数据,其中激光测量仪数据的计算公式如下图所示:其中是指定机器人需要到达的点位,而机器人需要通过运动学逆解,计算6个关节的角度,然后通过伺服控制使得电机旋转到指定的位置。这里我们认为激光测量仪测量到的数据为机器人实际到达的位置,而。
【机器人学】6-4.六自由度机器人运动学参数辨识-机器人精度验证【附MATLAB代码】 比如:让机械臂向前走100mm,第一次走到了99.8mm,第二次走到了100.1mm,这个差值0.03mm就是重复定位精度(并不是严格定义),而绝对定位精度是你需要运行100mm的距离,而实际走了101mm,这个差值1mm就是绝对定位精度。重复定位进度的计算只需要对测量到的5*30=150个数据进行操作,而绝对定位精度的计算需要将给定的5个点的位置,与测量值相比较,由于激光测量仪的测量坐标系,与机械臂给定位置的给定值的坐标系不同,故需要进行转换。我们今天的定位精度的验证标准,关于末端定位精度的概念。
【机器人学】6-3.六自由度机器人运动学参数辨识- 机器人辨识参数耦合性分析 最小二乘法求解DH参数时,为了保证误差最小,使用了QR分解求解矩阵的最小条件数。辨识后的DH参数,与辨识前的DH参数有什么联系?,辨识后的DH参数与辨识前的DH参数的差值可以反映机器人的几何结构的真实偏差吗?我们给机器人的几何参数进行了数学建模,其中使用高斯牛顿法求解出了激光仪相对于机器人基座的坐标变换。在后续计算时,应将雅可比矩阵J中对应R中不可识别的参数的相应列去除。由于计算机的计算不是精确的,条件数越高,计算精度的误差对解的影响也越大。那么我们的机器人模型在使用QR分解后有哪些参数是不可识别的呢?